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Abstract 

 

This thesis describes our investigations into the development of a general method for the 

catalytic, asymmetric bromination of alkenes. The bromination catalysts employed in the 

research are ortho-substituted iodobenzenes, which are hypothesised to deliver Br+ to the 

alkene substrate via a hypervalent I(III)-Br bond.  

 

Initially, endeavours to achieve a large scale preparation of our asymmetric bromination 

catalyst, 2,6-di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene, or R-IBAM, 

are detailed. In order to facilitate this, a large quantity of enantiopure 1,2-diphenylethylene 

diamine  was required to form the chiral amidine moieties of our R-IBAM catalyst. Thus, the 

development of two novel methods for the synthesis and resolution of 1,2-diphenylethylene 

diamine are described and the subsequent application of each route to a large scale 

preparation of the enantiopure diamine. The subsequent novel and optimised preparation of 

our catalyst to produce 25 g of R-IBAM is detailed.  

 

The following studies into the catalytic asymmetric bromination of alkenes include the 

screening of the various reaction conditions, stoichiometric addition of N-bromosuccinimide 

to the catalysts and the synthesis and screening of a range of R-IBAM derivatives and 

analogues. An improved understanding of the catalytic cycle and the possible mechanisms 

of loss of enantioexcess in our brominated product is detailed. 

 

The final section of the thesis describes research into the exchange of Br+ between 

enantiopure bromonium ions and alkenes. The generation of an enantiopure bromonium ion 

in the absence of alkene was achieved via the rearrangement of enantiopure bromohydrin, 

(2S)-1-bromo-1-phenylpropan-2-ol. The intermediate bromonium ion was trapped by 

chloride to produce the enantiopure bromochlorinated product. This, to the best of our 

knowledge, represents the first example of the generation and trapping of an enantiopure 

bromonium ion. Our subsequent investigations into Br+ transfer from the bromonium ion to 

added alkene are described. 
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1. Introduction: Asymmetric Electrophilic Bromination and the Bromonium Ion 

 

 

1.1. A History of the Bromonium Ion 

 

Br

R2 R4

R3R1

1  
Figure 1: the bromonium ion as proposed by Roberts and Kimball 

 

The bromonium ion, 1, was first proposed as an intermediate in the electrophilic bromination 

of alkenes by Roberts and Kimball in 1937.1 Previously, work by Bartlett and Tarbell2 had 

demonstrated that the first step in the reaction of halogen molecules with olefins led to the 

formation of a negative halide ion and a positively charged organic ion. Roberts and Kimball 

invoked a bridged cationic intermediate (1) rather than an open β-bromocarbonium ion (2) to 

account for the well-established stereochemistry of the addition of molecular bromine to 

olefins.3 They argued that the initial formation of a bromonium ion (preventing free rotation 

around the carbon-carbon bond), followed by its opening with bromide in an SN2 manner, 

could account for the predominantly trans addition of bromine across the alkene.  

 

 

Figure 2: bromonium ion (1) or β-bromocarbonium ion (2) 

 

It is interesting to note that even Roberts’ and Kimball’s original paper indicated that the 

“actual structure is undoubtedly an intermediate between 1 and 2”, due to the very small 

difference between the ionisation potentials of carbon (11.22 volts) and bromine (11.80 

volts). This uncertainty in the nature of a bromonium ion has fuelled a scientific debate that 

has spanned almost six decades and, despite the emergence of much new evidence, has 

still not been satisfactorily resolved.   
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1.1.1. Structure of the “Bromonium Ion”; Cyclic Bromonium Ion (1) or β-Bromocarbonium Ion 

(2) 

 

Subsequently to Roberts’ and Kimball’s proposal of a 3-membered cyclic bromonium ion 

intermediate, Winstein published a series of elegant investigations into bridging bromine in 

the reactions of 3-bromo-2-butanols.4,5 Winstein and Lucas noted that when 2,3-

diacetoxybutane is converted into 2,3-dibromobutane by the action of fuming hydrobromic 

acid, the transformation is accompanied by an odd number of inversions.6 Thus, racemic 

(R*,R*)-diacetate 3 affords the meso (R*,S*)-dibromide 4 and the meso (R*,S*)-diacetate 5 

affords the racemic (R*,R*)-dibromide 6 (Scheme 1). 

 

 
Scheme 1: reaction of 2,3-diacetoxybutanes with hydrobromic acid 

 

The substitution reactions were demonstrated to proceed with complete stereoselectivity, 

each proceeding to give a single product. This unexpected phenomenon prompted Winstein 

and Lucas to investigate the reaction in greater detail in an attempt to elucidate its 

mechanism. It was found that 3-bromo-2-butanol (7 and 8) was the last of the intermediates 

in the reaction profile7 and that it was the conversion of this to the dibromide that gave rise 

to the unexpected stereochemistry of the products. Winstein and Lucas observed that the 

reaction of racemic (R*,S*)-3-bromo-2-butanol (7) with hydrobromic acid affords pure meso 

(R*,S*)-2,3-dibromobutane (4), whilst racemic (R*,R*)-3-bromo-2-butanol (8) yields pure 

racemic (R*,R*)-2,3-dibromobutane (6) (Scheme 2).4 
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Scheme 2: reaction of 3-bromo-2-butanols with hydrobromic acid 
 

As a possible explanation for the observed retention of configuration in the above reactions, 

Winstein and Lucas proposed a cyclic bromonium ion intermediate 10 (Scheme 3). 

 

 
Scheme 3: Winstein’s proposed bromonium ion mechanism 

 

The proposed mechanism involves a double inversion, via neighbouring group participation 

of the bromine to expel water, followed by opening of the bromonium ion with bromide to 

afford the product with complete stereospecificity. Furthermore, Winstein hypothesised that 

this cyclic bromonium ion was analogous to that proposed by Roberts and Kimball as an 

intermediate in the electrophilic bromination of olefins. 

 

As further confirmation of their proposed mechanism Winstein and Lucas repeated their 

experiments with optically active 3-bromo-2-butanols.5 As expected, the optically enriched 

(+)-(R*,S*)-3-bromo-2-butanol (7) afforded the optically inactive meso dibromide 4. 

Additionally, the optically enriched (-)-(R*,R*)-3-bromo-2-butanol 8 gave racemic (R*,R*)-

2,3-dibromobutane 6 due to the progression of the reaction through a meso cyclic 

bromonium ion 11 (Scheme 4), resulting in the loss of any enantioexcess in the product.  
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Scheme 4: formation of racemic dibromide 

 

Winstein reasoned that if the intermediate was not a bromonium ion (1), but an open β-

bromocarbonium ion (2) both starting materials should afford a mixture of meso (R*,S*)-2,3-

dibromobutane (4) and optically active (R*,R*)-2,3-dibromobutane (6); an observation which 

is not recorded and thus a reaction pathway which can be ruled out. The other proposed 

forms for the cationic intermediate are an open β-bromocarbonium ion where the 

configuration is stabilised in the pyramidal form, or an asymmetric, weakly bridged 

bromonium ion. If either such route is operating, the resulting dibromide produced from the 

optically active (-)-(R*,R*)-3-bromo-2-butanol (6) should retain some degree of its enantio-

enrichment, due the reaction proceeding via an intermediate which is not completely 

symmetrical (and thus is not meso). Therefore, with two beautifully simple experiments, 

Winstein had unequivocally proven the existence of a cyclic bromonium ion in his 

symmetrical aliphatic system. 

 

However, despite Winstein’s excellent progress in determining the identity of the cationic 

intermediate, a number of questions were still left unanswered. Firstly, Winstein’s and Lucas’ 

investigation is limited to a symmetrical aliphatic bromonium ion. It is very likely that the 

cationic intermediate in question may change with the structure of the carbon framework. 

Secondly, whilst Winstein’s and Lucas’ work proved the existence of a symmetrical 

bromonium ion, it does not ascertain whether this is a true intermediate or simply a short 

lived transition state. It is feasible that such a transition state may form and subsequently 

collapse to form a one-to-one distribution of the two possible open β-bromocarbonium ions. 

These could go on to react in a stereospecific manner to each afford a single diastereomer 

of the dibromide. There is a precedent in the literature for the stereospecific reaction of 

certain carbonium ions8 and thus, such a mechanism was proposed as a plausible 

alternative by Winstein’s contemporaries.9  

 

In 1942, Winstein and Buckles went on to demonstrate the phenomenon of bromide bridging 

in the reaction of meso (R*,S*)- and racemic (R*,R*)-2,3-dibromobutanes (4 and 6) and 
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trans-1,2-dibromocyclohexane with silver acetate.10 Winstein, Grunwald and Ingraham also 

investigated the relative rates of acetolysis of a range of 2-substituted cyclohexyl 

benzenesulfonates11,12 providing further evidence for the neighbouring group participation of 

the bromine in the expulsion of the leaving group and for the formation of a bridged 

bromonium ion. The acetolysis of trans-2-bromoester 12 is 800 times faster than that of the 

cis-2-bromoester 14 (Scheme 5), strongly suggesting that the trans-2-bromine atom 

furnishes a nucleophilic driving force in the reaction.12 

 

 

 

Scheme 5: acetolysis of 2-bromocyclohexyl benzenesulfonates 

 
In 1951 Buckles and Long reported the bromochlorination of alkenes with bromine chloride 

(generated by a mixture of N-bromoacetamide and hydrochloric acid).13 Under the reaction 

conditions styrene, trans-cinnamic acid, trans-stilbene and cis-stilbene all afford the 

bromochlorinated products in which addition was demonstrated to be both trans and 

consistent with Markovikov’s rule. Thus the stereo- and regio-chemistry were consistent with 

initial bromonium ion formation followed by ring opening by chloride.  

 

Henbest and Wilson noted the stereochemistry of the addition of hypobromous acid to 

steroid 15 in 1959.14 This proceeded to give the bromohydrin (17) in a trans-diaxial manner 

(Scheme 6), suggesting the initial formation of a bromonium ion and its subsequent opening 

in keeping with the stereochemical requirements of attack on a three-membered ring. 
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Scheme 6: addition of hypobromous acid to steroid 15 
 

Thus, by the early 1960s, evidence in favour of the bromonium ion accumulated to the point 

where it was well established as an intermediate in the electrophilic bromination of alkenes.9 

However, since its initial proposal and Winstein’s and co workers’ proof of concept, the 

nature the bromonium ion over a more general range over of substrates has been subject of 

much scrutiny.  Whilst Winstein had, at the very least, proven the transient existence of a 

cyclic bromonium ion in his symmetrical, aliphatic system, evidence for open transition 

states and intermediates in olefin bromination was also accumulating. In 1968, Fahey and 

Schneider reported that the electrophilic bromination of cis- and trans-β-methylstyrenes (18) 

and trans-anethole 21 proceeded in a non-stereospecific manner (Scheme 7).15  

 

 

 

Scheme 7: nonstereospecific bromination of trans-β-methylstyrene (18) trans-anethole (21) 

 

The product mixtures obtained suggest that, in such non-symmetrical substrates capable of 

forming resonance stabilised benzylic carbocations, the intermediate resembles an open 

benzylic carbocation more than a bromonium ion. The decrease in the stereoselectivity of 

the reaction on the introduction of a p-methoxy group on the phenyl ring is consistent with 

an intermediate of considerable benzylic carbocation character. The electron donating effect 
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of the p-methoxy group further stabilises a β-bromo benzylic carbocation, reducing any 

bridged character and thus decreasing selectivity for trans addition of bromine.  

 

Rolston and Yates16 investigated the bromination of a range of α- and β-methyl-substituted 

styrenes and demonstrated that all such additions were also not completely trans selective. 

They compared the non-stereospecific bromination of cis- and trans-2-phenyl-2-butene, 

which proceeded with 63% and 68% trans addition respectively, with the 100% trans 

dibromide obtained with cis- and trans-2-butene under analogous conditions.  

 

In addition to analysing the product stereochemistry to draw inferences about the 

intermediate, Yates et al17,18 and Dubois and Schwarcz19 investigated the relative rates of 

bromine addition to aromatically substituted styrenes (24, Scheme 8) and analysed their 

findings by a Hammett plot.  

 

 

Scheme 8: bromination of aromatically substituted styrenes 
 

In almost all cases the rates demonstrated a better correlation with σ+ values than σ and all 

the plots demonstrated a negative ρ value, indicating a transition state in which positive 

charge is developed at the benzylic carbon. However, substantially different ρ values were 

calculated in different studies, possibly as a consequence of different experimental 

techniques and reaction conditions.  

 

Yates and Wright17 initially calculated a ρ value of -2.23 for the bromination of a range of 

styrenes, 24, substituted with electron withdrawing groups (X = 3-F, 3-Cl, 3-Br, 3,4-Cl, 3-

NO2, 4-NO2) in acetic acid. The reactions were followed by changes in bromine absorption 

at 450 nm and the rate data was correlated against σ values. Rolston and Yates18 later used 

a potentiometric method, requiring the presence of a large concentration of bromide, to 

analyse the rates of a similar range of styrene derivatives. The results were correlated to σ+ 

and gave a ρ value of -2.65. However, Rolston and Yates noted that the presence of 

bromide can increase the rate of bromination and ascribed this to the occurrence of an 

additional mechanism (and thus transition state) proceeding via tribromide. They duly 
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separated the rate constants into kBr2 and kBr3- terms. The ρ values from the plots of these 

separate terms were -4.21 for the molecular bromine process and -2.02 for the tribromide 

process, indicating the former is more than 100 times as sensitive to the effects of ring 

substituents. On comparing this ρ value of -4.21 to Yates’ previously obtained value of -2.23 

a large difference was obvious. In an attempt to explain such inconsistency, Yates and 

Rolston replotted the earlier rate data against σ+ and noted a marked curvature in the new 

plot. 

 
Figure 3: plot of rate constants versus σ

+
 for bromination of substituted styrenes (by 

molecular bromine only) in acetic acid at room temperature
18 

 

Yates ascribed this curvature to a change of mechanism in the reaction series due to the 

presence of two possible methods of stabilisation of the positive charge, i.e. delocalisation 

into the ring and participation of by the neighbouring bromine. It was hypothesised that the 

points to the right hand side of the plot (X = 3-NO2, 4-NO2) proceed via a transition state 

which has considerably more stabilisation of the positive charge by assistance of the 

neighbouring bromine and thus has a much lower dependency on the σ+ value for the 

aromatic substituent. However, less electron poor styrenes proceed via a transition state 

more characteristic of a benzylic carbocation than a bromonium ion. Thus, these styrenes to 

the left hand side of the Hammett plot exhibit a greater dependence on σ+. 

 

Dubois’ and Schwarcz’s19 Hammett treatment of the bromination of styrenes also employed 

a similar potentiometric method to Rolston and Yates, using a Br2/Br- mixture. However, they 

conducted the study in methanol, in which the rate acceleration by added bromide has been 

demonstrated to be absent.20 They also correlated their results to σ+ and calculated an 
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overall ρ value of -4.30. This marked difference from Rolston’s and Yates’ overall ρ value 

was ascribed by Yates to different solvent/Br- effects. However, Dubois’ and Schwarcz’s 

investigations mainly used styrenes substituted with electron donating groups (X = 3-H, 4-F, 

3-Me, 4-Me, 4-MeO) which, if Yates’ theory of a variable mechanism is correct, should 

proceed via a benzylic carbocation-like transition state. As such, it is no surprise that Dubois’ 

and Schwarcz’s electron rich substrates demonstrated a higher degree of dependence on σ+ 

than Yates’ electron deficient styrenes.  

 

Typical ρ values for solvolysis reactions involving a benzylic carbonium ion intermediate are 

in the range of -4.0 to -4.7. Thus, these Hammett investigations of styrene bromination 

suggest a highly asymmetrical intermediate with a large amount of positive charge placed 

on the benzylic carbon. However, the nature of the intermediate also appears to be strongly 

dependent on the structure of the starting olefin, such that an array exists between 

essentially open β-bromocarbocations in the styrene intermediates bearing an electron 

donating substituent, to substantially bridged bromonium ions in the styrene intermediates 

bearing electron withdrawing groups. In 1971 Yates generalised this qualitative theory for all 

olefins, proposing a spectrum of possible cationic intermediates, of which 26 and 28 are 

extremes.21  

 

 

Figure 4: Yates’ qualitative description of the “bromonium ion” 

 

In 1973, Yates and McDonald22 conducted a thermochemical-kinetic study of the transition 

state structure of olefin bromination and found that, in all of the alkenes studied, the initial 

enthalpy difference between cis and trans isomers increased on moving into the transition 

state. This indicates an increase in unfavourable steric interactions in the cis alkene upon 

formation of the transition state. It is hypothesised that this originates in the movement of the 

substituents into closer proximity to each other on formation of a bridged intermediate. 

Surprisingly, this energy difference was observed over a range of alkenes including both 

symmetric and non-symmetric alkenes and aliphatically and aromatically substituted 

substrates. Their findings, combined with previous observations in the literature, led Yates 

and McDonald to conclude that, although there is a spectrum of intermediates ranging from 
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symmetrically bridged bromonium ions to open β-bromocarbonium ions, an initial bridged 

transition state was involved in all cases.  

 

There is a plethora in the literature of further kinetic and stereochemical investigations into 

the nature of the bromonium ion. Their findings, depending on the alkene in question and 

the reaction conditions, support open,23 closed24 and weakly bridged25 intermediates 

encompassing characteristics of both. An extremely thorough and more quantitative analysis 

of the structure of the cationic intermediate of bromination was undertaken by Dubois, 

Rausse and co-workers.26 Their analysis was based on rate-product relationships and 

encompassed a range of substituted stilbenes. Dubois and Rausse reasoned that a stilbene 

system can follow three pathways in bromination; the Br, Cα or Cβ pathways in which the 

intermediate is a bromonium ion (30) or a carbocation with the positive charge localised on 

either Cα (31) or Cβ (32) respectively (Figure 5).  

 
Figure 5: pathways of stilbene bromination 

 

The Hammett plot for monosubstituted stilbenes has a marked curvature (Figure 6), 

demonstrating unambiguous competition between two pathways. 

 

 
Figure 6: the curved Hammett plot for the bromination of monosubstituted stilbenes in 

methanol
26 
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Additionally, Dubois and Rausse reported that in X,Y-disubstituted stilbenes (33 and 34, 

Figure 7), when both X and Y are electron donating, the kinetic effects of the two 

substituents are not additive. This is indicative of a highly asymmetric charge distribution in 

the transition state. In contrast, additivity is observed when the two substituents are both 

electron withdrawing. 

 

 

Figure 7: kinetic effects of substituents in X,Y-disubstituted stilbenes 

 

Dubois and Rausse concluded that electron-donating groups favour the Cα β-

bromocarbonium ion pathway, whilst electron withdrawing groups promote the formation of 

a bromonium ion. The ρ values obtained from the Hammett analysis (-1.0 for Br pathway, 

-5.4 for Cα pathway, -1.6 for Cβ pathway) were used to calculate the preferred pathways 

depending on substituents and were compared to the observed regiochemistry of addition 

(Table 1). A good correlation was observed between Dubois’ and Rausee’s predictions and 

the experimental product ratios obtained.  
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Table 1: bromination of stilbenes in methanol; comparison of the experimental and calculated 
rates, and of the regiochemistry

26 
 

Predominant pathsc 
Xa Ya Log kb 

Cα Cβ Br 

% MeOH 

attack on Cα
d 

4-OH 4-OMe 5.97 (5.73) + +   

4-Me H 1.88 (1.91) + +  97 (95) 

H H 1.04 (0.56) + + + 50 (50) 

4-Cl H 0.29 (0.11) + + + 34 (35) 

3-CF3 H -0.07 (-0.31)  + + 0 (0) 

4-NO2 3-Cl -1.57 (-1.58)   +  

 

a - X and Y at Cα and Cβ, respectively. b - k in litres per mole per second at 25 ºC; experimental and, 

in parentheses, calculated data. c - The sign “+” means the corresponding pathway is significant. d - 

Experimentally measured percentage (%) and, in parentheses, calculated percentage (%).  

 

Thus, Dubois and Rausse concluded that the degree of bridging in the intermediate is 

intimately related to the substituents around the bromonium ion and their ability to stabilise 

an adjacent partial positive change. In short, Yates’ hypothesis appears to be an excellent 

qualitative description of the cationic intermediate in the bromination of alkenes.  

 

Ruasse and Dubois also investigated the effects of solvent in the electrophilic addition of 

bromine to olefins and whether, as had previously been hypothesised, solvent can exert an 

influence on the structure of the cationic intermediate.26 McManus and co-workers,27 Modro 

et al28 and Rolston and Yates29 had all postulated that there is greater bromonium ion 

character, as opposed to β-bromocarbonium ion character, as the solvent polarity 

decreases. They proposed that this occurs as a consequence of the differential solvation 

requirements of the two extreme structures of the intermediate. However, in contradiction to 

this, Rausse and Dubois reported that in the rate determining step of bromination (i.e. the 

formation of the bromonium ion) the solvent exerts a high polar effect and strong 

electrophilic assistance, but little or no nucleophilic involvement. This led them to the 

conclusion that solvent changes cannot lead to significant variation in bromine bridging. 

They therefore invoke the relative ease of rotation of the β-bromocarbonium ion conformers 
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and the lifetime of the intermediate to explain the differences in trans stereoselectivity 

observed in different solvents. 

 

More recently, a number of quantum mechanical studies have been employed to assess the 

relative stabilities of the cyclic bromonium ion and the open β-bromocarbonium ion. 

Hamilton and Schnaefer30 calculated the cyclic ethylene bromonium ion to be more stable 

than the 1-bromoethyl cation by 1.5 kcal mol-1, in good agreement with experimental results. 

Rausse and co-workers31 calculated the energy profiles for six bromonium ions with varying 

methyl substitution (Figure 8). They found very shallow or flat minima corresponding to 

symmetrical or highly asymmetric bridged structures, depending on the symmetry of the 

substitution.  

 
 

Figure 8: Rausse’s energy profiles for bromonium ion formation
31 

 

These results provide further insight into the complexities of the intermediate and reaction 

profile of bromination. However, it was noted by Brown and Klobukowski32 that the 

magnitude of the asymmetry calculated for the bromonium ion is markedly dependent on the 

computational method used. Brown commented that the structure of the ion becomes more 

symmetric as the quality of the computational method improves and thus casts some doubt 
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upon the high degree of asymmetry of the substituted bromonium ions in Rausse’s earlier 

calculations. 

 

NMR studies have also been used to probe the structure of bromonium ions. Olah and co-

workers33 were the first to observe a stable bromonium ion and study it by NMR 

spectroscopy. Treatment of 1-2-bromo-2-fluoroethane (35) with antimony pentafluoride 

resulted in the loss of fluoride to afford the ethylene bromonium ion (36).  

 

 

Scheme 9: formation of stable bromonium ion 

 

In the absence of any nucleophile, this ion was stable in sulphur dioxide at -60 ºC and its 1H 

NMR was spectrum was recorded. This demonstrated the coalescence of the two doublets 

of triplets of 35 (at 3.49 ppm and 4.61 ppm) to a broad singlet at 5.53 ppm, indicating the 

formation of an electron deficient symmetrical intermediate. 

 

 In 1985, Servis and Domenick34 observed the deuterium isotope effects on the 13C chemical 

shifts of the bromonium ion derived from 2,3-dimethyl-2-butene-d6 (37, Figure 9). They 

observed a large downfield (positive) shift of the resonance of the carbon proximal to the 

deuteria and ascribed this to a β-deuterium isotope effect. The β-deuterium isotope effect 

occurs as a consequence of the perturbation of the vibrational motion caused by deuterium 

substitution. Vibrational perturbation results in a reduced C-D bond length and increased 

electron density at the sp3 hybridized carbon atom. This reduces the degree to which the 

C-D bond can stabilise an adjacent carbocation by hyperconjugation and results in a small 

downfield (positive) shift in an adjacent electron deficient sp2 hybridised carbon. Servis and 

Domenick proposed that a three-membered cyclic bromonium ion, in which all bonds are of 

the two-electron two centre type, best fitted their findings. 

 

 

Figure 9: Servis’ and Domenick’s NMR substrate 
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However, Ohta et al35 recently applied a similar analysis to chloronium ions with surprisingly 

different observations. In addition to the intrinsic isotopic shifts reported by Servis and 

Domenick, it is possible for an additional isotopic 13C shift to be caused by the isotopic 

perturbation of a degenerate equilibrium (Scheme 10). 

 

 

Scheme 10: isotopic perturbation of a degenerate β-bromocarbocation equilibrium 

 

Due to the relative destabilisation (as described above) of a carbocation adjacent to the site 

of deuterium substitution, if the cation is asymmetrically substituted with deuterium, the two 

isotopomers 38a and 38b of the β-bromocarbocation are no longer degenerate. Thus, the 

equilibrium favours the isotopomer with deuteria placed distal to the carbonium ion (38b) 

rather than proximal (38a). The result of this isotopic perturbation is that the time averaged 
13C signal for the distal quaternary carbon should appear downfield (positively shifted) from 

the 37-d0 signal, whilst the proximal carbon signal should appear upfield. Such equilibrium 

isotope shifts (∆eq) are typically large and temperature dependent.  

 

Ohta et al reported such equilibrium isotope shifts in their chloronium ion system and 

concluded from their observations that chloronium ions are better described as equilibrium 

of β-chlorocarbonium ions. Additionally, they found evidence for the occurrence of 1,2-

methyl shifts in the sample mixture. If such shifts occurred in Servis’ and Domenick’s 

system, they would have generated a mixture of isotopomers with both geminal and vicinal 

orientations of the methyl-d3 groups. Based on these findings, Ohta re-examined Servis’s 

and Domenick’s work and reported that the cationic brominated intermediate of 2,3-

dimethyl-2-butene-d6 also demonstrates equilibrium isotope shifts, a phenomenon which 

was missed by Servis and Domenick due to the complication of the spectrum by the 

occurrence of a mixture of isotopomers formed via the 1,2-methyl shifts. Ohta provides a full 

description of the observed signals within the framework of an isotopic perturbation of an 

equilibrium on a mixture of isotopomers. Thus they conclude that 28 is also better described 

as an equilibrium of β-bromocarbonium ions than a cyclic bromonium ion (Figure 10).  
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Figure 10: Ohta et al’s conclusions on the nature of the bromonium ion 

 

However, Ohta et al note the absence of any temperature dependence of the observed 

equilibrium isotopic shift; an observation which is inconsistent with the proposal of an 

equilibrium. A perhaps more plausible explanation for their observations is the isotopic 

perturbation of the symmetric bromonium ion structure to give an asymmetrically bridged 

intermediate (38c). 

 
Figure 11: isotopically perturbed bromonium ion 

 

The sensitivity of the degree of bromine bridging to the asymmetric substitution of the 

double bond is well established.15-21 Thus, it is reasonable to assume that deuterium 

substitution will, via the β-deuterium isotope effect, destabilise a completely symmetric 

bromonium ion (28) in favour of an asymmetrically bridged structure (38c). The partial 

positive charge is now no longer equally distributed over the quaternary carbon atoms and 

thus an analogous downfield shift of the carbon distal to the deuteria and an upfield shift of 

the proximal carbon should be observed. This distortion would not be expected to be 

temperature dependent and thus this hypothesis seems to more accurately agree with 

Ohta’s experimental results than that of an equilibrium between β-bromocarbocations. 

 

1.1.2. Isolation and Characterisation of Stable Bromonium Ions 

 

A major breakthrough in the field was made in 1969 when Wynberg and co-workers36 

reported that when adamantylideneadamantane (39) is treated with bromine in carbon 

tetrachloride, a yellow precipitate is obtained. Wynberg formulated this as the world’s first 

example of an isolable three membered bromonium ion - bromide salt (39Br+/Br3
-, Scheme 

11). 
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Scheme 11: reaction of adamantylideneadamantane and bromine 

 

The identity of this yellow precipitate was confirmed in 1985 when Brown and co-workers37 

reported the crystal structure of 39Br+/Br3
- (Figure 12). The salt was revealed to contain the 

proposed three membered cyclic bromonium ion. The unique structure of 

adamantylideneadamantane precludes any trans attack due to severe crowding at the 

opposite side of the molecule of the bromonium ion. It also cannot undergo loss of a proton 

to form an allylic bromide due to the only available protons lying at bridgehead carbons. It is 

interesting to note that even from the completely symmetrical adamantylideneadamantane 

(39), the adduct 39Br+/Br3
- contains a slightly asymmetrical bromonium ion with C-Br bond 

lengths of 2.166 (6) and 2.194 (6) Ǻ. It was hypothesised that this distortion could be a result 

of the interaction between the Br3
- counter ion and the bromine of the bromonium ion. 

 

 

 

Figure 12: X-ray crystal structure of 39Br
+
/Br3

-
 (hydrogen atoms omitted for clarity)

37
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In 1991, Brown and co-workers further reported the formation of a 39Br+/TfO- salt on the 

sonication of 39Br+/Br3
- in the presence of methyl triflate.38,39 After removal of the volatiles 

(CH3Br, Br2), a white solid was obtained which was characterised by NMR and, following re-

crystallisation from dichloromethane, X-ray crystallography (Figure 13).  

 

 
 

Figure 13: the asymmetric unit in the X-ray crystal structure of 39Br
+
/TfO

-
 (all hydrogen atoms 

omitted for clarity)
39 

 

 

The X-ray crystal structure of the 39Br+/TfO- salt revealed the presence of a completely 

symmetrical bromonium ion with C-Br bond lengths of 2.118 (10) and 2.136 (10) Ǻ. This is 

presumably due to the considerably weaker interaction with the less nucleophilic triflate 

counterion relative to that with Br3
-. 

 

These advancements in the isolation of a stable bromonium ion not only confirmed its 

structure and existence as an intermediate, but also facilitated subsequent detailed 

investigations into the mechanism of the electrophilic bromination of olefins. 
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1.1.3. Intermediates in the Electrophilic Bromination of Alkenes: the Bromonium Ion and the 

Charge Transfer Complex  

 

The existence of a charge transfer complex (CTC) in the early stages of the electrophilic 

bromination of alkenes has long been well established in the literature.40 Spectroscopic, 

kinetic and thermodynamic studies support the role of one or two π complexes (40 and 41, 

Figure 14) as intermediates in bromine addition. 

 

 
Figure 14: charge transfer complexes (CTCs) 

 

It is generally accepted that via either solvent or bromide assisted dissociation the CTC 

goes on to form the bromonium/β-bromocarbonium ion intermediate. However, in some 

cases, depending upon the olefin structure and the attacking nucleophile, it has been 

proposed that bromination may occur through via the nucleophilic attack on the CTC 

complex itself.40,41 

 

Following Brown’s isolation of the stable 39Br+/Br3
- salt, Brown, Bellucci and co-workers 

undertook a study of the solution behaviour of adamantylideneadamantane (39) and 

bromine in 1,2-dichloroethane.42 They reported that equilibrium is instantaneously 

established between 1:1, 1:2 and 1:3 olefin-Br2 complexes (Scheme 12). 

 

 
Scheme 12: adamantylideneadamantane/bromine equilibrium

42 
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The mixtures obtained were highly variable and closely dependent upon the relative 

concentrations of the reagents, as would be expected for a rapidly exchanging system. 

Brown’s and Bellucci’s studies revealed the rate of formation of the CTC to be related to the 

substitution pattern and electron-donating ability of the alkene as well as steric crowding 

around the double bond. Comparison of the formation constant of the CTC of 

adamantylideneadamantane (39/Br2) with those of other alkenes which can proceed beyond 

the formation of the bromonium ion demonstrated that it is by no means an atypical alkene 

with respect to the generation of a CTC.42 Thus, the conclusions that can be drawn from 

studying the reaction of bromine with 39 can be taken as directly applicable to the 

bromination of reactive alkenes. Therefore, as a result of their findings in their studies of 39, 

Brown and Bellucci were able to propose a general scheme summarising the various 

mechanistic pathways for the electrophilic bromination of olefins (Scheme 13).43 
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Scheme 13: Brown’s and Bellucci’s proposed mechanism of electrophilic bromination
43 
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1.2. Reversible Bromination Ion Formation 

 

The question of whether of not bromonium ion formation was reversible was one which, until 

the 1980’s, had received very little attention. In 1984, Brown et al’s studies on the solvolysis 

of the trans-bromobrosylates of cyclohexene (12) and cyclopentene was the first indication 

that such a phenomenon may exist.44 A series of experiments were conducted in which the 

trans-bromobrosylates of cyclohexene (12, Scheme 14) and cyclopentene were solvolysed 

at 75 ºC in acetic acid containing Br- and an acceptor olefin, namely cyclopentene and 

cyclohexene, respectively. 

 

 

Scheme 14: Brown’s solvolysis of the trans-bromobrosylate of cyclohexane 12 in the 
presence of cyclopentene 45 

 

It was hypothesised that, in a similar manner to Winstein’s early experiments, the bromine 

assists the exit of the leaving group and produces the intermediate bromonium ion 42. This 

could then be opened by either solvent or bromide to form the corresponding trans product, 

or the Br+ of the bromonium ion is captured by bromide to liberate molecular bromine and 

the free alkene. The so produced molecular bromine would then go on to react with excess 

scavenger olefin to produce its normal addition products. It was observed by Brown and co-

workers that, in the presence of bromide and cyclopentene, the products of the solvolysis of 

12 consist of the dibromide and bromosolvates of both cyclohexane and cyclopentane. 

Likewise, the solvolysis of the trans-bromobrosylate of cyclopentene in the presence of 

bromide and cyclohexene led to a similar product mixture (though differing greatly in the 

relative amounts of the components). Brown’s observations led him to propose the 
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reversible formation of bromonium ions via the attack of the bromide anion on the bromine 

of the bromonium ion. 

 

Four years later, Bellucci et al reported the slow debromination of dibromide 48 back to the 

olefin and molecular bromide (Scheme 15) when stirred at room temperature in acetonitrile 

in the presence cis-stilbene (50).45 

 

 

 

Scheme 15: Bellucci’s debromination of dibromide 48 

 

Like Brown, Bellucci ascribed the debromination to occur via reformation of the bromonium-

bromide ion pair 49, followed by attack of the bromide on the bromine atom of the 

bromonium ion to re-form olefin and molecular bromide, which is scavenged by cis-stilbene 

(50). 

 

A subsequent collaboration between the two authors resulted in the publication of a kinetic 

isotope effect study in the bromination of sterically encumbered alkene tetraisobutylethylene 

(53).46  

 

 

Scheme 16: bromination of tetraisobutylethylene (53) 
 

Due to severe steric hindrance to trans attack on bromonium ion 54, the alkene reacts with 

bromine in acetic acid to form the double bond rearranged allylic bromide 55. Brown, 

Bellucci and co-workers reported a large kinetic isotope effect (2.3) in the reactions of 53-H8 

(L=H) and 53-D8 (L=D) in which the eight allylic positions are isotopically substituted. They 

demonstrated that this value was too large for any imaginable β-secondary kinetic isotope 
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effect on the bromonium ion and was most consistent with a primary effect in which a C-L 

bond is removed in a rate limiting or partially rate limiting elimination. The observation of 

such a primary kinetic isotope effect requires that all steps preceding the rate limiting one 

must have lower activation energies. Consequently, the bromonium ion intermediate is likely 

to be reversibly formed.   

 

However, the first unequivocal proof for the reversibility of formation of the bromonium ion 

was reported by Brown in 1991 from his studies on the bromonium ion salt of 

adamantylideneadamantane, 39Br+/TfO-.38,39 

 

1.2.1. Adamantylideneadamantane and Reversible Bromonium Ion Formation  

 

 
Figure 15: Bromonium ion of adamantylideneadamantane, 39Br

+
 

 

Brown et al found that 13C NMR was an effective tool in the study of 39Br+/TfO- in 

solution.38,39 At -80 ºC, the 13C NMR spectra demonstrated that the bromonium ion contained 

two perpendicular planes of symmetry. One plane contains the C2, C2’ and Br atoms of the 

bromonium ion, whilst the other plane contains the Br atom and bisects the C2-C2’ bond. The 
13C resonances for the carbons on the top side of the molecule (C8,8’,10,10’) are distinct and 

are shifted downfield from their counterparts (C4,4’,9,9’) on the bottom side. However, addition 

of a small amount of adamantylideneadamantane, or Ad=Ad, to the mixture resulted in the 

broadening and ultimately the coalescence of the C8,8’,10,10 and C4,4’,9,9’ peaks to give a single 

narrow line for C8,8’,10,10,4,4’,9,9’. From these observations, Brown deduced that a fast, 2-step 

exchange process is occurring which translates Br+ from the top to the bottom side of the 

39Br+ molecule via the intervention of a second molecule of Ad=Ad.  

 

 
Scheme 17: Br

+
 exchange between Ad=Ad molecules 
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The second order rate constant for this Br+ exchange was calculated as 2 x 106 M-1s-1 at 

-80 ºC, with an activation parameter of ∆H‡ = 1.8 ± 0.2 kcal mol-1, indicating an extremely 

facile process. As a simple model for the bromonium ion-alkene Br+ exchange, Brown et al 

calculated the energies of the Br+ transfer between two ethylenes. Their results indicated 

that the lowest energy conformation for the exchange was the approach of the two ethylene 

molecules with their C-C bonds orientated at an angle of 90º (Figure 16).The calculated 

potential energy profiles demonstrated the existence of three intermediate states in the 

reaction coordinate; two degenerate olefin-bromonium complexes and a single D2d transition 

state. 

 

 
 

Figure 16: classical potential energy profile for Br
+
 (X

+
) exchange between two ethylene 

moieties
39 

 

Further calculations by Braddock, Rzepa and co-workers considered the possibility of an 

inverted non-classical potential energy profile (Figure 17) in which the equidistant point for 

the bromine atom, 57, is an energy minimum.47 
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Figure 17: inverted non-classical energy potential profile for Br
+
 exchange between two 

alkenes 

  

Braddock and Rzepa’s calculations suggested that, in the gas phase at least, the inverted 

energy potential was a better model for Br+ transfer between alkenes. As the four-coordinate 

species 57 exists in a potential well, the rate of bromonium ion transfer would be determined 

by entropic rather than energetic considerations, which is in good agreement with the 

extremely facile exchange observed by Brown. The calculations also indicated very little 

energetic discrimination between a tetrahedral (57) and planar (59) central bromine atom, 

suggesting a less rigid geometry for the transition state than Brown previously predicted. 

 

 

Figure 18: D2d (57) and D2h (59) intermediates 
 

The computational theoretical studies on Br+ transfer and the observed ease with which 

such exchange occurs in the sterically hindered Ad=Ad systems suggests that Br+ transfer 

from 39Br+ to other acceptor olefins should also occur readily. Thus, Brown and co-workers 

went on to investigate such a possibility. 

 

Brown, Bellucci and co-workers initially probed the transfer of Br+ from 39Br+ to acceptor 

olefins by the addition of cyclohexene-d10 to a solution of 39Br+/TfO- in dichloromethane. 2H 
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NMR of the solution demonstrated the conversion of cyclohexene-d10 into trans-2-

bromocyclohexyl trifluoromethanesulfonate-d10. Neverov and Brown extended the scope of 

Br+ transfer from 39Br+/TfO- by studying the process with a wide range of acceptor olefins in 

the bromocyclisation reaction (Figure 19).48  

 

 
Figure 19: bromocyclisation substrates 

 

In all cases the products were formed in essentially quantitative yield and were those 

expected from an electrophilic bromocyclisation reaction. The kinetics of these reactions 

were conveniently monitored by observing the decrease in absorbance of the bromonium 

ion triflates, 39Br+/TfO- at 250 nm in dichloroethane containing an excess of olefin. Brown 

and Neverov reported several observations of note. Firstly, they demonstrated that Br+ 

transfer and subsequent cyclisation is fastest for the formation of five-membered rings. This 

was accounted for by invoking the anchimeric assistance by oxygen of the Br+ addition to 

the π-bond which is optimised when the assisting group can react to form a five-membered 

ring (Figure 20). 

Br

H
H H

O
H

63  
Figure 20: internal stabalisation of the bromonium ion by lone pairs on oxygen 

 

Brown and Neverov also noted that addition is faster for more highly substituted olefins and, 

for a given ring size, ether cyclisation is faster than lactonisation. This was ascribed to the 

greater inductive electron withdrawing effect of the COOH group relative to the OH, which 
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decreases the reactivity of the π-bond to electrophilic attack. This effect could also be due to 

the greater nucleophilicity of the alcohol oxygen compared to that of the carboxylic acid and 

thus its greater contribution to the anchimeric assistance of the addition of Br+ to the olefin.  

 

Unexpectedly, Brown and Neverov noted that addition of Ad=Ad markedly suppressed the 

reaction rate in all cases. With certain olefins (60b and 61b) the reaction is completely 

suppressed at high Ad=Ad concentrations. With others, the added Ad=Ad suppresses the 

reaction to a certain point, but no further. Additionally, it was reported that in some cases 

(e.g. 60b-d) the bromocyclisation exhibited kinetic terms which were second order with 

respect to the concentration of alkenol. In fact, for these cases, added propanol or pentanol 

catalysed the reaction. Brown and Neverov rationalised this behaviour by a general 

mechanism involving two reversibly formed intermediates 64 and 65 (Scheme 18).  
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Scheme 18: 39Br
+
 promoted bromocyclisation of alkenols 

 

The addition of Ad=Ad will cause the second equilibrium k1/k-1 to lie towards intermediate 

64, added Ad=Ad recapturing the alkenol bromonium ion 65 to reform the CTC 64. This 

would result in the observed suppression of rate noted by Brown and Neverov. The 

suppression of the rate of bromocyclisations by Ad=Ad to a certain point, but no further, 

suggests the existence of another channel for the formation of the product which does not 

proceed via bromonium ion 65. It was suggested that this involved direct cyclisation within 

complex 64. For the bromocyclisations which are catalysed by the addition of alcohol, it was 

proposed that product formation could occur via four alternative pathways. Two of these are 

the spontaneous cyclisation of either complex 64 (k3) or bromonium ion 65 (k2), whilst the 
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remaining two involve a second molecule of alkenol or added alcohol (k3’ and k2’). It was 

suggested that the mechanism for this catalysis proceeds via the action of ROH as a base 

to remove the proton from the intramolecular nucleophile OH, thereby assisting ring closure. 

Thus, Brown’s and Neverov’s studies in the use of 39Br+/TfO- as a Br+ transfer agent 

allowed a much deeper insight into the mechanistic subtleties of halocyclisations than had 

previously been achieved. However, most significantly, it was demonstrated that Br+ transfer 

from a bromonium ion kinetically competes with nucleophilic attack on the carbons of the 

bromonium ion, even when the nucleophile in question is already tethered to the alkene to 

facilitate an intramolecular cyclisation. Although the Ad=Ad system can be described as a 

special case due to the unprecidented unreactivity of 39Br+, it seems logical to apply the 

findings from such examples of facile Br+ exchange to the bromination of reactive olefins. 

The ease of Br+ transfer from, or to, such a sterically encumbered system as 39Br+/Ad=Ad 

suggests that Br+ transfer involving two less hindered alkenes should occur readily. 

 

1.2.2. Normal Bromonium Ions and Reversible Bromonium Ion Formation  

 

As described earlier, the first indication that reversible bromonium ion formation in normally 

reactive systems may be more prevalent than previously believed was reported by Brown 

and co-workers in 1984 with the solvolysis of trans-bromobrosylates in the presence of a 

scavenger alkene.44 However, it was contended26 that this evidence was obtained under 

“more or less drastic conditions”, i.e. at elevated temperatures and in solvents such as 

acetic acid or chlorinated solvents, in which the fates of the bromonium ions were different 

from what occurs in aqueous or alcoholic media. It was suggested that under such, more 

“normal” conditions, there is an absence of reversal unless the olefin is highly congested.49 

Thus, in 1993, Brown and co-workers repeated similar experiments using the trans-

bromotriflate of cyclohexene (66), which was solvolysed at room temperature in both acetic 

acid and methanol (Scheme 19).50 
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Scheme 19: Brown’s solvolysis of trans-bromotriflates of cyclohexane 
 

Analogously to the brosylate system (Scheme 14), Brown and co-workers observed a 

product mixture that consisted of the dibromide and bromosolvates of both cyclohexane (43 

and 68) and cyclopentane (46 and 69), indicative of reversible bromonium ion formation. 

Control experiments established that no direct attack of bromide on 66, which leads to 

elimination, is occurring and that free molecular bromine is formed over the course of the 

reaction. Significantly, in the absence of bromide, no cyclopentyl products were observed 

during the solvolysis of bromotriflate 66. Thus, no direct transfer of Br+ from bromonium ion 

to alkene was observed under these conditions. The degree of reversibility and subsequent 

Br2 liberation was also demonstrated to be dependent on the solvent; far more cyclopentyl 

products are produced from solvolysis of bromotriflate 66 in methanol/Br- than in acetic 

acid/Br-. 

 

Subsequently to Brown and co-workers’ investigations in this field, Rodebaugh and Fraiser-

Reid reported evidence to support the direct transfer of Br+ from the bromonium ion 

intermediate to an acceptor alkene.51 Rodebaugh and Fraiser-Reid observed that, upon 

treatment with NBS in aqueous acetonitrile, n-pentenyl glycoside 70c underwent oxidative 

hydrolysis to the corresponding hemi-acetal 71, whilst allyl (70a), butenyl (70b) and hexenyl 

(70d) analogues gave bromohydrin addition products 73 and 74 (Scheme 20).  
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Scheme 20: reaction of ω-alkenyl glycosides with aqueous NBS 

 

Furthermore, it was found that when the n-pentenyl (70c) and n-hexenyl (70d) glycosides 

were made to compete for an insufficient amount of NBS, a product ratio of 23:1 was 

obtained in favour of the products derived from pentenyl species (71 and 72). This was 

unexpected, due to the similar rates displayed by the two analogues when they are reacted 

independently (product ratio predicted by the pseudo-first order rate constants; 2.6:1). Upon 

further investigation, the product distribution of this competition reaction was found to be 

concentration dependent, the ratio of hemiacetal 71 to bromohydrins 73 and 74 decreasing 

with decreasing concentration. Rodebaugh and Fraiser-Reid rationalised these results by 

invoking the extremely facile, diffusion controlled transfer of Br+ between bromonium ions 

and alkenes in the reaction mixture (Scheme 21). It was proposed that both 70c and 70d 

react to give the corresponding bromonium ions 75c and 75d, respectively, the former 

progressing rapidly to the hydrolysis products, 71 and 72. Transfer of Br+ from the less 

reactive bromonium ion 75d to excess alkene, before it is trapped by a nucleophile, is set 

against the more rapid nucleophilic trapping of bromonium ion 75c. This results in a product 

distribution weighted hugely in favour of the products resulting from the hydrolysis of the 

more reactive intermediate, 75c.  
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Scheme 21: Br
+
 exchange in the bromination of ω-alkenyl glycosides 

 

Rodebaugh and Fraiser-Reid concluded that Brown’s observation of facile transfer within the 

39Br+/TfO--alkene system could also be applied to ordinary, unhindered, electronically 

similar and (nearly) equivalently reactive alkenes.  

 

The generality of a reversible bromonium ion mechanism and of bromonium ion-alkene Br+ 

exchange in the electrophilic bromination of olefins is still debated in the literature. Evidence 

which contests the reversible formation of bromonium ions has also been reported. Much of 

this evidence is derived from studies of solvent effects as reported by Rausse and Dubois. 

26,49 More recently, in 1999,  Merrigan and Singleton reported their findings of kinetic isotope 

effects in the bromination of 1-pentene (76) in carbon tetrachloride.52 They demonstrated the 

presence of an inverse 2H kinetic isotope effect for the vinylic protons and a relatively small, 

but significant 13C kinetic isotope effect for both olefinic carbons (Scheme 22). 

 

 
 

Scheme 22: 
13

C and 
2
H kinetic isotope effects for the bromination of 1-pentene 76 

(theoretically predicted kinetic isotope effects in parentheses) 

 

These observations matched the calculated predicted kinetic isotope effects for the 

formation of a bridged bromonium ion at the rate determining step. This led Merrigan and 
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Singleton to conclude that the formation of the bromonium ion was irreversible (i.e. rate 

determining). 

 

It is possible that some of the conflicting evidence originates in differing degrees of 

reversibility of the bromonium ion formation depending on the cyclic bromonium ion or β-

bromocarbonium ion character of the intermediate. In 1991 Brown, Bellucci and co-workers 

reported that the degree of reversibility of bromonium ion formation in a series of substituted 

cis-stilbenes appeared to decrease with increasing β-bromocarbonium ion character of the 

intermediate.53 An excess (2:1, olefin to bromine ratio) of the cis-stilbene (78a, b, c and d) 

was reacted with bromine in dichloromethane to give the dibromide. Whether the involved 

intermediate ions were symmetrically or asymmetrically bridged, or an open β-

bromocarbonium ion, depended on the ability of the remote substituents to stabilise a 

positively charged benzylic cation. Brown and Bellucci reported a product mixture from the 

bromination which not only contained a mixture of the (R*,R*) and (R*,S*) dibromides, 82 

and 83, but also the corresponding trans-stilbene 79. The observed product mixture was 

rationalized by the reversible formation of a partially bridged (the degree of bridging varying 

with substrate) bromonium ion (80 and 81, Scheme 23).  

 
Scheme 23: the reversible formation of a partially bridged bromonium ion in the bromination 

of cis-stilbenes 
 



 45

The degree of bridging in the intermediate was determined by the (R*,R*)/(R*,S*) (82/83) 

ratio of the dibromide products obtained, significant bridging leading to an increase in trans 

addition. The degree of reversibility was monitored by the trans-stilbene (79)/dibromide (82 

and 83) ratio. It was reported that there was a strong correlation between increasing 

bromine bridging and increasing reversibility from 78a through to 78d. Thus, Brown and 

Bellucci deduced that open β-bromocarbonium ions do not significantly revert back to the 

olefin. However, symmetrically bridged bromonium ions are much more prone to reversal. 

This is consistent with considering the relative charge distribution in the two intermediates. 

Theoretical calculations have demonstrated that a symmetrically bridged bromonium ion will 

have a significant amount of charge located on the bromine atom,54 which will thus be 

activated to attack by a nucleophile (e.g. bromide or alkene). On the other hand, an open β-

bromocarbonium ion has the majority of positive charge localised in the carbon atom. Thus, 

nucleophilic attack is more likely to occur at the carbon than at bromine, leading to trapping 

of the intermediate to form addition products rather than undergoing Br+ exchange. 

 

The experimental and theoretical results obtained in favour of the Br+ exchange mechanism 

lead to the conclusion that a general bromonium ion-alkene Br+ exchange process certainly 

cannot be ruled out. Thus, the possibility of such a process must be given serious 

consideration when designing or interpreting reactions involving the electrophilic bromination 

of olefins. 

 

 

1.3. Catalytic Asymmetric Electrophilic Bromination 

 

1.3.1. Investigations into the Catalytic Asymmetric Bromination of Alkenes Reported in the 

Literature 

 

The catalytic asymmetric transfer of a positively charged bromine atom to one face of a 

prochiral alkene, followed by regioselective attack of the bromonium ion by a nucleophile is 

unprecedented in the literature. This conclusion was reached after a review of asymmetric 

halogenation in 2004 by Cansell55 and publications in the field since this date have been 

limited. A significant advancement in the area of asymmetric halogenation was reported in 

2007 by Sakakura et al with the development of the reagent controlled asymmetric 
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iodolactonization of polyprenoids (for example, 84, Scheme 24) with excellent 

enantioselectivity (91-99% ee over a range of polyprenoids).56 

 

 

Scheme 24: Sakakura et al’s asymmetric iodocyclization of polyprenoids 
 

Sakakura et al used phosphoramidite 86 as a chiral nucleophilic promoter to activate the 

iodinating agent, N-iodosuccinimide (87), and transfer “I+” to the alkene substrate (Scheme 

25).  

 

 

Scheme 25: nucleophilic promotion in the activation of N-iodosucciminde and halocyclisation 
of 4-(homogeranyl)toluene (84) 

  

However, application of the same methodology to bromocyclisation (using NBS as the 

halogen source) afforded only 36% enantioexcess in the product. Attempts to render the 
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reaction catalytic in the nucleophilic promoter resulted in negligible enantioselectivity, 

yielding 29% product with an ee of 4%. 

 

Thus, to date, a single example of a catalytic bromination reaction of an olefin exists, as 

developed by Henry and co-workers.57 Henry used catalytic amounts (0.5-3.1 mol%) of 

chiral bidentate Pd(II) complexes (91 and 92) to control the stereochemistry in the 

dibromination of olefins by copper(II) bromide (Scheme 26).  

 

 

Scheme 26: Henry et al’s asymmetric dibromination of alkenes 
 

Although yields and enantioselectivity were good for terminal α-olefins (e.g. (4-methoxy)-1-

phenoxy-2,3-dibromopropane (93), 95% yield, 96% ee), the enantiocontrol showed a 

marked decrease in the bromination of internal olefins (e.g., methyl 2,3-dibromo trans-

cinnamate (94), 84% yield, 14% ee). A great degree of success had also been obtained in 

the field of catalytic asymmetric α-bromination of aldehydes and ketones,58 but a 

comprehensive survey of this area is beyond the scope of this review. However, it is 

apparent that no successful catalytic asymmetric bromination reaction has been developed 

that proceeds via a chiral bromonium ion intermediate.  

 

1.3.2. Catalytic Asymmetric Bromination of Alkenes and the Reversible Formation of 

Bromonium Ions 

 

Our past and current research has been directed towards the development of a general 

catalytic asymmetric bromination reaction of alkenes. The successful development of such a 

protocol would provide a novel and extremely powerful synthetic tool. Subsequently to chiral 

bromonium ion formation and opening by a nucleophile, a number of transformations can be 

envisaged which utilise the newly incorporated chiral centres (Scheme 27) 
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Scheme 27: catalytic asymmetric electrophilic bromination of alkenes and subsequent 
transformations 

 

However, over the course of our current research, we had cause to re-examine the 

principles behind our ultimate goal of catalytic asymmetric bromination of olefins. In the light 

of the apparent reversibility of bromonium ion formation and the extremely facile transfer of 

Br+ between bromonium ions and alkenes in some systems, we noted that the catalytic 

asymmetric bromination reaction may be considerably more complex and challenging than 

originally perceived. In theory, a chiral bromonium ion may be formed as the result of a 

chiral catalyst. However, if Br+ exchange is a factor in the reaction mixture, in the presence 

of alkene starting material a chiral bromonium ion could go on to exchange Br+ with another 

prochiral alkene molecule. If this occurs in a non-asymmetric manner, this would lead to the 

loss of any enantioexcess imparted by the asymmetric bromination catalyst. 

 

 
 

Scheme 28: racemisation of chiral bromonium ion via Br
+
 exchange 
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Thus, after a review of the existing literature, we can more fully grasp the complexities of 

developing a catalytic asymmetric bromination reaction of alkenes. 

 

1.3.3. Previous Work within the Braddock Group  

 

Previous work within the Braddock group has focused on the development of 

organocatalysts in the asymmetric bromination of alkenes. The use of non-metal systems 

has advantages over the use of more common metal-based asymmetric catalysts (generally 

complexed with asymmetric ligands to allow enantiocontrol of the product)59,60 both in 

purification of the products and in the handling and disposal of the catalysts. It is often 

difficult to remove all traces of metal based catalysts and in addition to this they are 

generally toxic, introducing the necessity of complex and costly waste disposal procedures. 

 

1.3.3.1. Hypervalent Iodine as a Stoichiometric Electrophilic Bromine Transfer Reagent 

 

It had previously come to our attention over the course of our investigations into bromination 

that there are a number of instances of hypervalent iodine acting as a stoichiometric Br+ 

transfer agent in the use of (diacetoxyiodo)benzene, or DIB (100), with a bromide source.61 

On further research it was found that a stoichiometric combination of DIB (100) and LiBr in 

THF smoothly brominates a variety of substrates in less than 30 min at room temperature.62 

 

 
Scheme 29: DIB and LiBr as a source of “Br

+
” 

 

It was proposed that electrophilic bromine is generated in situ by the reaction of the bromide 

anion with DIB (100) and the displacement of acetate to give the intermediate 101 (Scheme 

30). The resulting I(III)-Br bond renders the bromide atom electrophilic and thus open to 

attack by the alkene moiety.   

 



 50

 
Scheme 30: formation of intermediate 101 containing hypervalent I(III)-Br bond 

 

In an attempt to gain evidence to support both the existence of such I(III)-Br bonds and their 

ability to act  as an electrophilic bromine source, the bromoiodinanes 103 and 105 were 

selected as suitable targets. Although similar species had been previously synthesised63 

there was incomplete characterisation of their structure, and no investigations had been 

carried out into the ability of such compounds to act as a source of electrophilic bromine 

(instead their reactivity in free-radical brominations had been explored). It was found that the 

bromoiodinanes of interest (103 and 105) were formed cleanly and in good yield by the 

addition of NBS to the corresponding carbinol precursor (102 and 104, Scheme 31). 

 

 
Scheme 31: formation of bromoiodinanes 

 

The structures of the iodinanes 103 and 105 and consequently the presence of the I(III)-Br 

bonds were confirmed by single crystal X-ray diffraction.64 Screening of the bromoiodinanes 

with electron-rich olefin substrates confirmed their ability to act as a source of electrophilic 

bromine (Scheme 32). 

 

 
Scheme 32: bromolactonisation with bromoiodinanes as a source of Br

+ 
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 1.3.3.2. Catalytic Hypervalent Iodine-Mediated Bromination 

 

A significant observation of the above bromination reactions is that the only observable by-

products were the carbinol precursors (102 and 104) to the bromoiodinanes (103 and 105). 

In addition to this, the rate of bromination via the dimethylbromoiodinane (105) is 

considerably faster than bromination of substrate by NBS. These observations allowed the 

process to be rendered catalytic using a stoichiometric amount of NBS and 25 mol% of 

carbinol 105. Thus, catalytic hypervalent iodine-mediated bromination was achieved, 

opening up extensive possibilities for the development of asymmetric catalysts based on 

hypervalent iodine. 

 

A screen of iodine-based catalysts containing an electronegative heteroatom in the ortho 

substituent to the iodine revealed that increasing the nucleophilicity of the heteroatom 

increases the catalytic activity. Thus the rate of conversion of substrate 61b increases 

dramatically as the apical group is changed in the order alcohol < carboxylic acid < amide < 

amidine (Scheme 33 and Table 2) 
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Scheme 33 and Table 2: catalytic hypervalent iodine-mediated bromination 

 

Catalyst Time Conversion 

 

6 h 100% 

 

2 h 72% 

 

20 min 100% 

 

10 min 100% 

 

These results led to the selection of an iodine/amidine based catalyst with stoichiometric 

NBS as the most potent catalytic system. After this optimisation of the system, steps were 

taken to render the reaction asymmetric. 

 

1.3.3.3. Introduction of Asymmetry to the System 

 

The original modification made to the amidine based catalyst introduced chiral centres 

adjacent to the amidine nitrogens in (4R,5R)-2-(2-iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-

imidazole, or IAM (111R). 

I

N
H

N
Ph

Ph

111R  
Figure 21: (4R,5R)-2-(2-iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole, or IAM 
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Screening of this catalyst with a variety of unsaturated carboxylic acid substrates produced 

excellent yields of lactone but, unfortunately, with no enantiocontrol. It was reasoned that 

this lack of enantioselectivity was due to the remoteness of the chiral centres from the site of 

bromine delivery in the hypothesized I(III)-Br intermediate, (112, Figure 22). The 

electronically required linearity of the N-I(III)-Br bond orientates the bromine away from the 

chiral cyclic amidine. 

 
Figure 22: I(III)-Br catalytic intermediate of IAM 

 

It was hypothesized that a chiral group in the 6-position on the benzene ring, ortho to the 

iodine, should lie closer in space to the “Br+” in the catalytic intermediate than the group in 

the 2-position. This is confirmed by the observation that a sp3 group in the 6-position 

diminishes the catalytic activity of iodobenzoic acid (107) (53%, 19 h, c.f. 100%, 6 h) 

indicating the high sensitivity of “Br+” delivery to substituents in this position.  

 

The C2 symmetric structure of 2,6-di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-

yl]iodobenzene (IBAM, 113R, Figure 23) was settled on as a suitable candidate for an 

asymmetric bromination catalyst. This structure was desirable as the C2 symmetric design 

results in the I(III)-Br bond sitting in the same chiral pocket irrespective of free rotation. In 

addition to this, the cyclic amidine moiety places a sp2 centre at the C-6 position. This 

should allow introduction of chiral groups in close proximity without significantly diminishing 

catalytic activity (which the introduction of a sp3 centre at C-6 undoubtedly would). 

 

 

Figure 23: 2,6-di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene or IBAM 
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The catalyst IBAM (113R) demonstrated excellent activity and at 1 mol% loadings facilitated 

the complete conversion of pentenoic acid (61b) to the corresponding bromolactone 106 in 

less than 15 min at room temperature. However, extensive screening of the catalyst with 

various substrates and temperatures resulted in only limited success in terms of 

enantioselectivity. Most substrates were converted to lactone with no measurable 

enantioselectivity under the conditions employed. However, a reproducible enantioexcess 

was observed with the catalytic asymmetric bromination of cyclopenten-2-yl acetic acid 

(114) (Scheme 34).  

 

 
Scheme 34: enantioselective bromolactonisation with R-IBAM 

 

The (S)-enantiomer the IBAM catalyst (113S) was confirmed to produce the opposite 

asymmetric induction in the isolated bromolactone product. This result was extremely 

encouraging, representing the first example of a metal-free catalytic asymmetric alkene 

bromination reaction. 

 

Attempts were made to increase the enantiomeric excess of the product by changing the 

solvent and catalyst loading, but with no reproducible success. Due to a large amount of 

background variation in the results it was deduced that the enantioexcess observed is 

extremely sensitive to external factors such as small variations in temperature, solvent purity 

or localised heating during quenching. 

 

Another complication in this catalytic system became apparent on carrying out control 

reactions carried out with the iodine-free mono-amidine analogue, AM (116R).   

 

N
H

N
Ph

Ph

116R
 

Figure 24: iodine-free catalyst analogue, AM (116R) 
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Under identical reaction conditions, with low temperature quenching, lactone was produced 

in a similar yield to that seen with R,R-IBAM, 113R (50% c.f. 55-65%). This implies that in 

the catalytic reaction of IBAM (113) there is a significant background reaction occurring 

involving bromine transfer via the amidine moiety alone. As catalysis with iodine free species 

116R produced lactone with no enantiocontrol, it is suspected that this background reaction 

in IBAM may account for the low enantioexcess observed. It is likely that the observed 

variations in enantioexcess due to external factors, such as small variations in temperature, 

are occurring due to such factors affecting the ratio of “Br+” delivered from iodine and 

nitrogen (Figure 25).  

   

 
Figure 25: N-Br and I-Br catalytic intermediates 

 

 

1.3.3.4. Attempted Structural Elucidation of Active Catalytic Intermediates 

 

In order to gain further information on the site of bromine transfer, attempts were made to 

isolate the species formed on addition of stoichiometric NBS to IBAM (113R) (Scheme 35). 

Such additions, at room temperature in deuterated chloroform, resulted in the reaction 

mixture changing from a colourless to a bright green solution. Subsequent analysis by 1H 

NMR after stirring for 40 min indicated the complete conversion of NBS to succinimide. 

Overlapping peaks in the aromatic region prevented identification of any changes in the 

resonances belonging to the catalyst, although considerable line broadening was observed 

in both the 1H and 13C spectra. 
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Scheme 35: stoichiometric addition of NBS to IBAM (113R) 

 

Attempts at isolation of the active catalytic species 119R or 120R were unsuccessful, as 

were mass spectrometry experiments to confirm the existence of a catalyst-Br+ adduct.  

 

Similar stoichiometric additions were also carried out with both IAM (111) and AM (116). The 

reactions proceeded in the same fashion as observed with IBAM (113R), both solutions 

changing from colourless to yellow/green on addition of NBS, and 1H NMR analysis 

revealing complete conversion of NBS to succinimide. Line broadening was again observed 

in both the 1H and 13C spectra, to the extent that certain 13C resonances (142.6 ppm in 111 

and 143.5 in 116, belonging to the quaternary carbons on the phenyl rings (NCHC), and the 

HCN peak at 76.7 ppm in 111) no longer appeared as measurable peaks. This broadening 

was attributed to the formation of a new catalytic species containing a “Br+” moiety. 

 

Unfortunately, the methods employed failed to either isolate or fully characterize the 

intermediates concerned or to establish whether electrophilic bromine is bonded to the 

iodine in a hypervalent species or to the nitrogen of the amidine.  

 

In conclusion, past work conducted in the Braddock group has resulted in the successful 

development of a highly active non-metal catalyst for the bromination of alkenes, which 

demonstrates the ability to deliver Br+ with some degree of enantiocontrol. However, the 

level of enantioselectivity proved to be sensitive to a number of factors such as substrate, 

temperature, solvent and background reaction, and much scope exists for further 

investigations in this field. 
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1.4. Proposed Further Investigations into Asymmetric Catalytic Hypervalent Iodine-

Mediated Bromination: General Objectives 

 

The objective of our continued research into asymmetric bromination is to gain a better 

understanding of the catalytic system and the action of the catalyst IBAM (113). It is 

envisaged that we can use such knowledge to increase the enantioselectivity of the reaction 

and to develop a synthetically useful protocol.  

 

It was initially proposed that our investigations should focus on continuing and broadening 

our studies into the existing IBAM (113) catalyst. This would include further stoichiometric 

additions of NBS to the catalyst to determine the nature of the catalytic intermediate, more 

detailed investigations into the effects of temperature, solvent and catalyst loading and the 

synthesis and screening of modified IBAM-based catalysts. Additionally, over the course of 

our investigations, it became apparent that bromonium ion-alkene Br+ exchange within our 

catalytic bromination system also was a key factor which warranted our attention.  

 

In order to satisfy our research aims, it was apparent to us that considerably larger 

quantities of our catalysts IBAM (113) and IAM (111), and their iodine-free analogues BAM 

(121) and AM (116), were required than we had been previously been able to synthesise.  

 

 

Figure 26: asymmetric bromination catalysts and their iodine-free analogues 

 

The limiting factors in the previous synthesises of such cyclic amidine based catalysts had 

been two-fold. The extremely high cost of the (1R,2R)- and (1S,2S)-1,2-diphenylethylene 
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diamine (124R and 124S) resulted in the availability of only milligram amounts of chiral 

starting material. In addition to this, formation of the chiral cyclic amidine moieties via an 

intermediate imidate (123, Scheme 36) has always proved to be a low yielding and 

capricious reaction, often affording inseparable mixtures of products and resulting in the loss 

of the valuable diamine starting material. 

 

 

Scheme 36: original IBAM (122) synthesis 
 

As such, the route to IBAM (122) was unsuitable for a large scale synthesis and required 

modification. Thus, our first goal was to synthesise gram amounts of optically pure diamines 

124R and 124S and, on achieving this, to optimise catalyst synthesis, minimizing the loss of 

the chiral diamine.   
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2. Synthesis and Resolution of (+)-(1R,2R)- and (–)-(1S,2S)-1,2-

Diphenylethylenediamine (124R and 124S) 

 

 

2.1. Introduction 

 

2.1.1. 1,2-Diphenylethylenediamine (124) in Asymmetric Synthesis 

 

 

Figure 27: (+)-(1R,2R)- and (–)-(1S,2S)-1,2-Diphenylethylenediamine (124R and 124S) 

 

Asymmetric synthesis continues to be a rapidly developing field within organic chemistry. 

Enantiopure chiral diamines have been extensively utilized as a convenient source of 

chirality when incorporating a chiral motif into reagents and catalysts for asymmetric 

synthesis. As the applications of asymmetric methodology expand, the need for cheap and 

simple routes towards the chiral components of the catalysts and reagents become of 

increasing importance. 

 

The C2 symmetric (+)-(1R,2R)- and (–)-(1S,2S)-1,2-diphenylethylenediamines (124R and 

124S) and their N-modified derivatives have been widely incorporated into reagents for 

various asymmetric transformations. The chiral ligand 125 (Scheme 37), derived from chiral 

diamine 124S, has been demonstrated by Corey to be an excellent ligand for the 

enantioselective dihydroxylation of olefins by osmium tetraoxide, with enantiomeric 

excesses of 82-98% for olefins ranging from styrene to trans-3-hexene.65 
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Scheme 37: asymmetric dihydroxylation 

 

Corey has also employed similar N-modified diamines to form chiral boron reagents (127, 

Figure 28) for enantioselective propargylation,66
 propadienylation,66 allylation67 and aldol68 

reactions. All such reactions demonstrate excellent enantiocontrol (see Scheme 38, for an 

example of asymmetric propadienylation), and have proved valuable tools in the field of 

asymmetric synthesis.   

 

 

Figure 28: general structure of chiral bromoborane reagent  
 

 

 
Scheme 38: asymmetric propa-1,2-dienylation 

 

Chiral ligands based on our target diamine 124 have also been used in a number of 

important catalytic asymmetric processes. Corey has synthesised chiral Lewis acids in 

which the boron atom in 127 is replaced with aluminium. These were demonstrated to be 

highly enantioselective catalysts in the Diels Alder reaction.69  
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An extremely significant recent advancement in the field of asymmetric catalysis was made 

by Noyori on the introduction of chiral diarylethylenediamine ligands into his already well-

precedented BINAP-Ruthenium asymmetric hydrogenation catalyst.60 The inclusion of the 

chiral diamine to form a [RuCl2(phosphane)2(diamine)] complex such as 131 (Figure 29) 

allowed the extension of Noyori’s methodology to simple ketones. Catalyst 131 facilitated 

the reduction of a range of simple aromatic and heteroaromatic ketones with excellent 

enantiofacial differentiation; hydrogenation of acetophenone and its derivatives proceeding 

to give the secondary alcohols quantitatively in up to 99% ee. The methodology also 

tolerated a wide range of functional groups, including F, Cl, Br, I, CF3, OCH3, 

COOCH(CH3)2, NO2, NH2, and NRCOR.  

 

 

Figure 29: (S)-BINAP/(S)-diamine-Ru
II
 catalyst 

 

Further investigations by Noyori and co-workers found that [RuCl(diamine)(η6-arene)] 

complexes such as 132 (Scheme 39) catalyse asymmetric transfer hydrogenation of 

aromatic and acetylenic carbonyl compounds in a 2-propanol/alkaline-base system. The 

asymmetric reduction is thought to proceed via the 18-electron hydride intermediate, 134, 

which undergoes the enantioselective transfer of H2 to reform the 16 electron true catalyst 

133 (Scheme 39).70   

 

 
 

Scheme 39: asymmetric hydrogenation 
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Noyori’s unprecedented discoveries in this field have prompted an abundance of further 

work by other groups. Whilst the ruthenium/diamine combination has been retained, a 

number of modifications have been made to the diphosphine ligand. Recent developments 

include the synthesis and screening of 4,4’-substituted-xylBINAPS,71 these ligands imparting 

the highest enantioselectivity reported to date in the hydrogenation of ketones. A number of 

cheaper and easier-to-prepare alternatives to BINAP have also been investigated, including 

monodentate phosphines72 and “achiral” benzophenone-based diphoshines, to which 

chirality is imparted within the ruthenium complex by the chiral diamine.73 The substrate 

range of Ru/diamine hydrogenation catalysts has been expanded to include the dynamic 

reductive kinetic resolution of racemic α-branched aldehydes to optically active primary 

alcohols74 and the enantioselective reduction of activated C=C bonds.75  

 

Jacobsen demonstrated the use of manganese (III) complexes of chiral Schiff bases in the 

asymmetric epoxidation of unfunctionalised olefins.76 The epoxidation catalysts 135 and 136 

(Figure 30) were easily prepared from diamine 124 and, in 1-8 mol% loadings with a 

stoichiometric amount of iodosylmesitylene, gave good yields in moderate to good 

enantioexcess of the desired epoxide product.  

 

The inclusion of a glycol chain to form macrocyclic chiral manganese (III) salen complex 137 

was demonstrated to further increase the enantioselectivity of the epoxidation reaction.77 

 

 
Figure 30: asymmetric epoxidation catalysts 

 

Similar manganese/Schiff base complexes have also been demonstrated to catalyse the 

asymmetric cyclopropanation of simple alkenes78 and the silylcyanation of aldehydes with 

good to moderate enantioselectivity.79  
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Magnesium, complexed with N-substituted diamine 124, was used by Evans in 10 mol% 

loadings to enantioselectively catalyse the merged enolization and amination of N-

acyloxazolidiones (138) (Scheme 40).80 This presumably proceeds via a chelated 

magnesium enolate complex, in which the chirality is derived from the diamine ligand rather 

than the oxazolidinone auxiliary, thus reducing ten fold the amount of enantiopure reagent 

necessary to impart chirality to the product. The reaction proceeded with excellent 

enantiocontrol, enantioexcesses being observed in the range of 96->99% for a range of aryl 

substituted N-acyl groups. 

 

 
Scheme 40 

 

Enantiopure 1,2-diphenylethylenediamine (124) has also been used to form C2 symmetric 

chiral heterocyclic imidazoline moieties in ligands for asymmetric catalysis. Peters and co-

workers developed a ferrocenyl-imidazoline palladacyle (141), capable of catalysing Aza-

Claisen rearrangements with excellent enantioselectivity.81 Buscacca employed 

phosphoimidazolines (142) as electronically tuneable ligands to explore electronic effects in 

the asymmetric Heck reaction.82 Beller and co-workers demonstrated the ability of C2 

symmetric pyridine bisimidazoline ligand 143 to impart moderate to good enantioexcesses 

to the products of the ruthenium catalysed asymmetric epoxidation of aromatic olefins.83   
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Figure 31: selection of 4,5-diphenyl-imidazoline-containing chiral ligands 

 

Chiral N-hetereocyclic carbenes (NHCs); a relatively new class of ligand within asymmetric 

synthesis; are also commonly derived from enantiopure 1,2-diphenylethylenediamine. Both 

Grubbs84,85 and Hoveyda86 have recently reported the use of NHCs as ligands in ruthenium 

catalysed asymmetric olefin metathesis reactions. Hoveyda and co-workers have developed 

a bidentate asymmetric NHC ligand which, when complexed to ruthenium in catalyst 146, 

facilitates asymmetric ring opening cross metathesis with excellent enantioselectivity (83-

98% ee) (Scheme 41).86 

 

 

Scheme 41: asymmetric ring opening cross metathesis 

 

Grubbs and co-workers demonstrated the ability of a range of catalysts of the general 

structure 147 (Figure 32) to afford the de-symmetrised products of ring closing metathesis in 

good ee (76-92% ee).84 Additionally, it was demonstrated by Grubbs that these catalysts 
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could be used to facilitate asymmetric cross and ring opening cross metathesis with 

moderate to good enantioselectivity.85 

 

 
Figure 32: Grubbs’ asymmetric olefin metathesis catalyst 

 

Hoveyda has also developed the application of 1,2-diphenylethylenediamine-derived NHC 

ligands in the copper catalysed asymmetric addition of diethyl zinc to α,β-unsaturated 

ketones87 and to allylic phosphates.86 Faller and Fontaine have extended the use of NHC 

ligands into the field of rhodium catalysed asymmetric hydrosilylation, yielding 1-

phenylethanol in up to 58% enantiomeric excess from the hydrosilylation of acetophenone.88 

In almost all of the examples given above of the uses of NHC ligands in asymmetric 

catalysis, the ligands’ electronic and steric properties have been tuned via N-

functionalisation to optimise catalyst activity and enantioselectivity. It is evident that such 

asymmetric N-heterocyclic carbenes are extremely versatile and it is probable that we have 

not yet seen the full extent of their applications within asymmetric synthesis. 

 

A further group of asymmetric catalysts derived from the chiral diamine 124 are enantiopure 

amides and thioamides. Feng and co workers screened a range of amide-based bifunctional 

catalysts for the enantioselective cyanosilylation of ketones.89 As is the case with many such 

bifunctional catalysts, Feng’s catalyst was designed to mimic natural enzymatic processes, 

bringing two activated components together within an “active site”. Feng found that, of all the 

variations screened, a bisamide ligand derived from 1,2-diethylenediamine, complexed to 

titanium(IV) (148, Scheme 42), afforded the optimum enantioexcesses in the cyanohydrin 

products. 
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Scheme 42: asymmetric cyanosilylation of ketones 

 

Tsogoeva and Wei recently reported a bifunctional thiourea/primary amine organocatalyst 

(149, Figure 33) for the asymmetric Michael addition of ketones to nitroalkenes.90 Jacobsen 

and co-workers subsequently demonstrated the application of similar catalysts (150, Figure 

33) to the Michael addition of aldehydes to nitroalkenes.91 In both Tsogoeva’s and 

Jacobsen’s catalysts the C2 symmetry of the diamine is lost; one nitrogen atom forming part 

of the thiourea moiety and one remaining as a free primary amine. Both authors report that 

the bifunctional catalysts, which simultaneously activate both nucleophile and electrophile, 

facilitate the Micheal additions with high yields and excellent enantioselectivity. 

 

 

Figure 33: Tsogoeva’s (149) and Jacobsen’s (150) catalysts 
 

From such numerous examples, it is evident that enantiopure diamine 124 is an extremely 

useful and versatile source of chirality in asymmetric synthesis in many systems. As such, a 

short and efficient route for the formation and resolution of gram amounts of diamine is 

extremely desirable.  
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2.1.2. Existing Synthesis and Resolution of 1,2-Diphenylethylenediamine (124) 

 

Racemic diamine (±)-124 can be resolved into its enantiomers by diastereomeric salt 

formation with chiral carboxylic acids. A number of such resolutions have been achieved 

using tartaric acid,92,93,94 yielding the enantiopure diamine in moderate yields (49-66% after 

decomplexation, based on half the amount of diamine used). A higher yielding resolution 

employing mandelic acid95 to form the diastereomeric salt has also been reported (72% after 

decomplexation).  

 

However, the synthesis of the diamine, either in its enantiopure or racemic form, has proved 

more problematic and a number of different strategies have been employed. An 

enantioselective reduction of N-protected 1,2-diimines has been achieved using 

stoichiometric BH3.THF and catalytic chiral oxazoborolidine to give the N-protected diamine 

species.96 However, subsequent purification is required to separate the undesired meso 

compound from its enantiopure diastereomer. This has proved typical of such chemistry, 

reductive couplings of N-protected aromatic imines generally giving mixtures of meso and 

racemic N-protected diamines. A notable exception to this is Corey’s dissolving metal 

reduction of spiroimidazole 151 (Scheme 43).93 This successfully gave the desired racemic 

diamine after hydrolysis with no formation of meso the diasteromer observed. 

 

 

Scheme 43: dissolving metal reduction of spiroimidazole 151 

 

Two examples of direct asymmetric synthesis of enantiopure diamine 124 have also been 

reported, both of which commence with a Sharpless asymmetric dihydroxylation of stilbene. 

Salvadori converted chiral diol 152 to the diamide via diazide 153. This proceeded with an 

inversion of stereochemistry due to the SN2 displacement of the tosyl leaving group by azide 

(Scheme 44).97  
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Scheme 44: Salvadori’s asymmetric diamine synthesis 

 

Sharpless also achieved the transformation with inversion of stereochemistry of the diol via 

cyclic sulfate 154 and its subsequent reaction with an amidine to form enantiopure 

imidazoline 116.98 Hydrolysis yields the desired chiral diamine (Scheme 45). 

 

 

 
Scheme 45: Sharpless’ asymmetric diamine synthesis 

 

However, neither of these asymmetric syntheses are suitable for our aim of a large scale, 

low cost synthesis of enantiopure diamine 124 due to the high cost of the chiral reagents 

required to achieve the initial asymmetric dihydroxylation. 

 

Since the commencement of our own work in this area, an expedient asymmetric synthesis 

of diamine 124 has been reported by Deng and co-workers.99 Deng synthesised (+)-

(1R,2R)- and (–)-(1S,2S)-1,2-diphenylethylenediamine (124R and 124S) with high 

diastereo- and enantioselectivity via the addition of phenyllithium to the chiral C2-symmetric 

bisimine 157 (Scheme 46). The authors had previously developed a method for the large 

scale production of both enantiomers of tert-butanesulfinamide 155 in good yield and high 

optical purity100 and thus this method is viable as a large scale synthesis of the chiral 

diamine. 
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Scheme 46: Deng’s diamine synthesis 
 

The classical, and most widely used, route for the synthesis of diamine 124 involves the 

reaction of benzaldehyde (159) and liquid ammonia to give the diimine “hydrobenzamide” 

(160, Scheme 47). This is then followed by thermal cyclisation to “amarine” (161) by heating 

in an inert solvent (Scheme 47). Amarine is readily epimerised under basic conditions to 

“iso-amarine” (116) which, in principle, should liberate the desired racemic diamine on 

hydrolysis. However, due to strong conjugation, the cyclic amidine subunit is resistant to 

direct acid hydrolysis. Activation to attack by water is achieved by conversion to an N-acyl 

diamide and, once the conjugation is broken by acylation, the N-acyl iso-amarine (162) can 

be converted to the racemic diamine via a two-step hydrolysis procedure. 
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Scheme 47: Williams’ and Bailar’s diamine synthesis 
 

This route was first developed by Williams and Bailar92 in 1959 as a modification of the 

synthesis of enantiopure diamine 124 by Lifschitz and Bos.101 They achieved a large scale 

synthesis of racemic diamine 124, followed by resolution by recrystallisation with tartrate. 

Corey later confirmed the structures of the intermediates 160 and 161 by X-ray 
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crystallography, and suggested an alternative to the lengthy activation-hydrolysis procedure, 

using aluminium amalgam to achieve direct reduction to the diamine from iso-amarine.102 

Although this reduction considerably shortens the synthesis, this modification is unsuitable 

to apply to a large scale preparation as it uses large amounts of highly toxic reagents, 

requiring expensive and time consuming waste disposal procedures.  

 

Due to the lack of any need for chromatographic purifications and the low cost of the starting 

materials and reagents, William and Bailar’s route was selected as the most attractive for 

our large scale synthesis of enantiopure diamine, despite the lengthy activation-hydrolysis 

procedure. Thus this route was taken as a basis for our diamine synthesis, with a view to 

improving the procedure by combining the resolution and hydrolysis steps by protection of 

the amidine subunit with a chiral acyl group (Scheme 48). In this strategy two chemically 

distinguishable diastereoisomers 164 and 165 should be formed that are also activated to 

hydrolysis via nucleophilic attack at the amidine carbon.  

 

 

Scheme 48: proposed shortened diamine synthesis 
 

In conclusion, our aim was to develop and apply a novel synthesis and resolution to obtain 

gram amounts of enantiopure diamine 124, to be used to synthesise gram amounts of our 

catalytic targets AM (116), IAM (111), BAM (121) and IBAM (113).   
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2.2. Novel Synthesis and Resolution of (+)-(1R,2R)- and (–)-(1S,2S)-1,2-

Diphenylethylenediamine (124R and 124S) via the Formation Diastereomeric N-

Acylamidines103 

 

2.2.1. Improved synthesis of amarine using HMDS and benzaldehyde 

 

In previously reported syntheses of diamine 124 via the classical iso-amarine route, the 

amarine intermediate had been synthesised in two steps. Diimine 160, or hydrobenzamide, 

is formed by the reaction of liquid ammonia and benzaldehyde and, after isolation, this is 

subsequently cyclised to amarine (161) by heating in an inert solvent. However, on 

investigation into existing literature on similar reactions, it was discovered that further 

improvements could be made in this route by condensing the first two steps in Williams’ and 

Bailar’s synthesis into a single reaction. Uchida et al104 reported a one pot procedure using 

hexamethyldisilazane (HMDS) as a higher boiling alternative to liquid ammonia. The 

elevated boiling point facilitated heating of the reaction mixture and thus reduced the 

reaction time for formation of hydrobenzamide (160) from one week105 to a matter of hours. 

Additionally, heating the reaction mixture meant that once the hydrobenzamide (160) is 

formed in situ, it subsequently cyclises under the reaction conditions in a thermally promoted 

disrotatory ring closure. Thus, the desired amarine product (161) is obtained in a single step, 

in a fraction of the time required by Williams’ and Bailar’s protocol. This is achieved in a 

solvent free procedure performed by heating benzaldehyde and HMDS in a sealed tube at 

120 °C for 6 h (Scheme 49). 

 

 
Scheme 49: one pot formation of amarine 

 

The use of a sealed tube is undesirable for our purposes, the build up of high pressure in 

the reaction vessel (due to the evolution of ammonia over the course of the reaction) being 

dangerous and impractical when working on a large scale. Thus, the reaction was attempted 

in a round bottomed flask with a reflux condenser fitted under an inert atmosphere of 

nitrogen. 
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The first attempts at this procedure proved partially successful, crude 1H NMRs indicating 

the presence of some amarine (161) product in addition to unreacted starting material and a 

number of by-products. In an attempt to improve the reaction, the benzaldehyde (159) was 

distilled prior to reaction to ensure dryness and purity. However, this led to no reaction 

occurring at all; 1H NMR analysis of the crude reaction mixture revealing only unreacted 

starting materials present after 6 h. This led us to the conclusion that the small amount of 

benzoic acid present in undistilled benzaldehyde was catalysing imine formation by 

providing the optimum, slightly acidic, pH for the reaction. This was confirmed when, on a 

12 g scale, the addition of 1 mol% of benzoic acid led to the reaction proceeding smoothly 

over 17 h to give the amarine product (161) in 53% yield. 

 

However, upon increasing the scale of the reaction to 100 g an extended reaction time of 

36 h was necessary to observe completion of the cyclisation reaction. This resulted in a 

slightly reduced yield of 49%, with an increase in the number of by-products formed, 

possibly through decomposition of the amarine (161). It was thought that the added benzoic 

acid may be inhibiting the cyclisation step which proceeds via an anionic species (167, 

Scheme 50). 

 

 
 

Scheme 50: one pot formation of amarine 
 

Additional evidence was provided for this theory by the observation that the diimine 160 is 

rapidly consumed once the amarine product (161) has begun to form. It appears that the 

reaction may be autocatalytic, the strongly basic amidine product lowering the pH of the 
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system and promoting cyclisation. Evidently the reaction has a delicate pH dependence 

which may be affected by the differential rates of evaporation of reaction components on 

scaling up of the reaction. It is also possible that pressure differences on scaling up could 

affect yields. It was suggested that a reduction in the amount of benzoic acid may increase 

the overall reaction efficiency, and a series of smaller scale trial reactions were carried out to 

ascertain the optimum amount of catalyst (Table 3).  

 

Table 3: benzoic acid catalysed amarine (161) formation 
 

Ratio of amidine 161 to imine 160 at time, t Mol% of benzoic 
acid added t = 15 h t = 18 h t = 19 h 

1mol% 

25 : 75 
(benzaldehyde still 

remaining in 
reaction mixture) 

80 : 20 100 : 0 

 
0.5 mol% 

 

 
70 : 30 

 

 
100 : 0 

 

 
— 
 

0.1mol% 

40 : 60 
(benzaldehyde still 

remaining in 
reaction mixture) 

95 : 5 100 : 0 

 

The amount of benzoic acid catalyst was thus set to 0.5 mol%, our results demonstrating 

that this provided the optimum pH for the reaction. It is also interesting to note from the 

results that the final step of the reaction indeed appears to be autocatalytic; the rate of 

cyclisation increasing as amarine is produced. In accordance with our findings, on scaling 

up to 100 g the reduction in the amount of benzoic acid added leads to a shorter reaction 

time (24 h) and an increase in isolated yield (61%). 

 

2.2.2. Epimerisation of Amarine to Iso-amarine 

 

The isomerisation of meso amarine (161) to racemic trans-4,5-dihydro-2,4,5-triphenyl-1H-

imidazole (iso-amarine) (116) is performed in good yield (70%) following the procedure as 

published by Bailar and Williams.92 The reaction is achieved by reversible deprotonation of 

the NC-H protons by heating with sodium hydroxide in water and diethylene glycol (Scheme 

51).  The major product of this thermodynamically controlled system is the more stable iso-

amarine (116) with its phenyl groups placed in a less sterically demanding trans orientation.   
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Scheme 51: isomerisation of iso-amarine 

 

2.2.3. Acyl Chloride Mediated Acylation of Racemic Iso-amarine 

 

As a trial for the formation of the diastereomeric N-acyl amidines, iso-amarine 116 was N-

benzoylated by its reaction at room temperature with benzoyl chloride and triethylamine 

(Scheme 52). 

 

 
Scheme 52: benzoylation of iso-amarine 

 

It was found that no nucleophilic catalyst (e.g. DMAP) was necessary for the benzoylation; 

the amidine itself being sufficiently nucleophilic to react rapidly and cleanly with benzoyl 

chloride. In fact, in a trial experiment exploring the use of tetramethylguanidine (TMG) as an 

acylation catalyst (in a continuation of previous work which found it to be an effective 

nucleophilic catalyst in electrophilic bromination),106 it was found that the rate actually 

decreased if 0.1 eq of TMG were added in addition to the 2 eq of triethylamine (85% 

conversion of starting material after 30 min compared to 100% when no additional catalytic 

base added). This result is most likely due to the irreversible benzoylation of TMG by 

benzoyl chloride competing with the benzoylation of the iso-amarine rather than catalysing 

it. This is feasible due to the presence of the acidic proton in TMG allowing a neutral, stable 

benzoylated compound (170, Figure 34) to be formed on benzoylation with deprotonation. 

This differs from DMAP which, due to the absence of any acidic proton, forms an unstable 

cationic species upon benzoylation (171, Figure 34). This rapidly undergoes further reaction 

to transfer the benzoyl group to the starting material. 
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Figure 34 

 

Once successful benzoylation had been achieved, the same conditions were applied to the 

protection of the amidine with a mandelic acid derivative. (R)-(+)-Acetyl-mandelic acid (173) 

was selected as a suitable, readily available chiral carboxylic acid to be used in the 

resolution and activation to hydrolysis of the amidine. This was synthesized from (R)-(+)-

mandelic acid (172) following Singh’s proceedure.107 

 

 
Scheme 53: acetylation of mandelic acid 

 

The acetyl-mandelic acid was coupled to the racemic iso-amarine via the acyl chloride 174 

(Scheme 54). This resulted in the formation of two diastereoisomers, (–)-(4R,5R)-1-[(R)-α-

acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (175) and (+)-(4S,5S)-1-[(R)-α-

acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (176). These diastereomers 

were found to be distinguishable by NMR and separable by both flash column 

chromatography and fractional recrystalisation. 

 

 

Scheme 54: acyl chloride mediated coupling of (±)-iso-amarine and (R)-acetyl-mandelic acid 
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This was carried out on a gram scale, and the synthesis was taken through to the diamine 

final product. However, a value of zero was obtained for all the optical rotations of all the 

intermediate single diastereomers, indicating racemisation had occurred in the acylation 

process. This was confirmed by analysis of the final product by polarimetry, which proved to 

be racemic diamine. It was suggested that racemisation occurs as a result of the amidine 

starting material being basic enough to remove the α-proton of acetyl-mandelic acyl 

chloride. This would form the ketene, followed by the addition of the acetyl-mandelic moiety 

as a racemate, resulting in the formation of the two racemic diastereomers 175 and 176 

(Scheme 55). 

 

Scheme 55: racemisation of acetyl-mandelic acid 

 
 
2.2.4. DCC Mediated Acylation of Racemic Iso-amarine 

 

It was proposed that a solution to this problem would be to couple the acid and amidine via 

dicyclohexylcarbonimide (DCC) mediated coupling.108 The pKa of the α-proton in the acid will 

be significantly higher than in the acid chloride, reducing the possibility of addition of the acyl 

group by the ketene route. This was implemented with excellent results, producing optically 

pure diastereomers and ultimately producing diamines (124S) and (124R) as single 

enantiomers (Scheme 56).  

 

 
 

Scheme 56: DCC mediated coupling of isoamarine and acetyl-mandelic acid 
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2.2.5. Fractional Recrystalisation of Diastereomeric N-acyl amidines  

After separation of the two diastereomers by flash column chromatography, solubility 

screens were carried out with a range of different solvents. These revealed a marked 

difference in crystallinity of the two diastereomers, particularly on recrystallisation from 

ethereal solvents. Thus, fractional crystallisation of (+)-(4S,5S)-1-[(R)-α-

acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (176) was achieved from 

isopropyl ether, giving the pure diastereomer in 68% of the theoretical yield.  

The structure and diastereomeric identity of this species were confirmed by X-ray 

crystallography (Figure 35). 

 

 
 

Figure 35: X-ray crystal structure of (+)-(4S,5S)-1-[(R)-α-acetoxybenzeneacetyl]-4,5-dihydro-
2,4,5-triphenylimidazole (176) 
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Repeated attempts were made at fractional recrystallisation of the other diastereomer (+)-

(4R,5R)-1-[(R)-α-acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (175) from the 

diastereomerically enriched filtrate. However, despite the testing of a large number of 

solvent systems all such trials were unsuccessful. It was therefore decided to hydrolyse the 

mixture of diastereomers enriched in 175 to the diamide stage with aqueous hydrochloric 

acid (Scheme 57) and to attempt the fractional crystallisation of this compound. This 

proceeded with some success, pure (+)-N-(R)-acetoxyphenylacetyl-N’-benzoyl-(1R,2R)-1,2-

diphenylethylene diamine (179) crystallising from chloroform in 58% of the theoretical yield.  

 

2.2.6. Hydrolysis of N-Acyl Amidines to Enantiopure Diamines 

 

The N-acyl amidines 175 and 176 were hydrolysed in two steps to the enantiopure diamine 

products (124R and 124S) in modifications of the procedures developed by Williams and 

Bailar (Scheme 47). THF was added as an additional solvent to water in the hydrolysis to 

diamides 177 and 179 to improve solubility of the starting material. Further portions of 

aqueous hydrobromic and acetic acid were added in the diamide hydrolysis to the diamine 

to ensure complete hydrolysis and formation of hydrobromide 178 (Scheme 57). 

 
Scheme 57: hydrolysis of N-acyl amidine 176 to diamine 124S 

In summary, we have developed a novel, shortened route to enantiopure 1,2-

diphenylethylenediamine (124) (Scheme 58), and have successfully applied this to a large 

scale synthesis of  both enantiomers of the desired diamine.  
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(1) 0.5 mol% benzoic acid, 120 oC, 61%; (2) NaOH, H2O, diethylene glycol, 155 oC, 70%; (3) (R)-

Acetyl mandelic acid (173), DCC, CH2Cl2, quantative; (4) iPr2O; (5) (i) THF/H2O, HCl, reflux, 92% (ii) 

HBr(aq), AcOH, reflux, 34%; (6) (i) THF/H2O, HCl, reflux, 79% (ii) CHCl3, 58% pure R,R,R-179; (7) 

HBr(aq), AcOH, reflux, 46%. 

Scheme 58: novel synthesis of enantiopure 1,2-diphenylethylenediamine 124 

 

2.2.7. Confirmation of Optical Purity of Diamine 124 

The optical purity of the diamine was explored by Snyder’s 1H NMR method,109 using 

enantiopure mandelic acid as a chiral solvating agent. When the racemic diamine and 

enantiopure mandelic acid are mixed in a 1:2 ratio in deuterated chloroform (4 mg of 

diamine in 0.4 mL), the resulting 1H NMR was reported by Synder to demonstrate 
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distinguishable shifted resonances for the R,R and S,S enantiomers. The R,R and S,S NCH 

protons were reported as being shifted up to 0.046 ppm apart, thus demonstrating base-line 

separation in a 400 MHz spectrometer.  

Pleasingly, we found this result repeatable with the racemic diamine. However, we 

encountered problems when analogous conditions were applied to the enantiopure diamine. 

It was observed that the diastereomerically pure salts precipitated out from solution much 

more rapidly than the 1:1 diastereomeric mixture formed from the racemic diamine. The 

S,S,S and R,R,R salts precipitated out from deuterated chloroform almost instantaneously 

upon addition of the mandelic acid, whilst the R,R,S and S,S,R, though having slightly 

improved solubility, began to form crystals after ~30 seconds. This led to the practical 

necessity of forming only the R,R,S and S,S,R salts and running the spectra at 40oC to 

ensure full solvation (Scheme 59). Such raised temperatures lead to the loss of full, baseline 

separation for the NCH protons. However, when studying the aromatic region, baseline 

separation of a doublet at ~6.8 ppm was observed in the spectra of the racemic diamine 

recorded at 40oC (Figure 36). The two analogous spectra of the enantiopure diamine 

showed a single doublet in this region (Figure 37 and Figure 38), thus confirming optical 

purity of the R,R and S,S diamines to >96% enantiomeric excess (the detection limit of 

Synder’s method being stated as <2%). 

 
 

Scheme 59: determination of optical purity of diamine 124 
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Figure 36: racemic diamine 124 with (S)-mandelic acid (172) 

 

 
 

Figure 37: (S,S)-diamine 124 with (R)-mandelic acid (172) 
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Figure 38: (R,R)-diamine 124 with (S)-mandelic acid (172) 

 

 

2.3. Novel Synthesis and Resolution of (+)-(1R,2R)- and (–)-(1S,2S)-1,2-

Diphenylethylenediamine (124R and 124S) via Fractional Crystallisation of (±)-

Isoamarine with Enantiopure Mandelic acid110 

 

2.3.1. Limitations of our initial diamine synthesis 

 

Our novel synthesis and resolution of diamine 124 via our N-acylamidines proceeded with 

considerable success. Not only were gram amounts of both enantiomers of 1,2-

diphenylethylenediamine synthesised in high optical purity, but we also gained access to a 

number of interesting optically pure chiral intermediates. 

 

However, within the context of our work, our procedure had two major failings. Firstly, the 

final hydrolysis step of the diamide to the diamine was low to moderate yielding (34-46%), 

resulting in the loss of much of our valuable resolved material at this late stage of the 

synthesis. From analysis of the by-products of this step, it is hypothesised that the poor 

yields are a consequence of a side reaction involving the hydrolysis of the acetyl ester of the 

acetyl mandelic acid moiety. This produces alcohol 180 (Figure 39), which is isolated from 

the reaction mixture as a solid precipitate and is thought to undergo no further hydrolysis 

due to its extreme insolubility. 
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Figure 39: by-product in hydrolysis of diamide 

 

Secondly, we had initially hoped to gain access to optically pure iso-amarine (116) (for use 

in our studies into asymmetric catalytic bromination) by removing the acyl group from the 

resolved N-acylamidine 175 and 176. Unfortunately, 175 and 176 proved resistant to all our 

efforts of selective hydrolysis or reduction. Thus, despite us having developed an efficient 

procedure to form large amounts of racemic iso-amarine (116), we still had no simple 

method of obtaining a single enantiomer.   

 

Thus, when a second batch of diamine was required and it was necessary to return to our 

synthesis, we turned our attention to solving the problems encountered in our initial 

procedure. It was decided that we would attempt a direct resolution of the iso-amarine 116 

via diastereomeric salt formation. If successful this would give us access to enantiomerically 

pure iso-amarine in three steps from benzaldehyde and HMDS (after salt decomplexation). 

Additionally, this strategy should also eliminate our problems in the final hydrolysis step; 

Williams and Bailar report good yields92 for their hydrolysis of racemic iso-amarine, a 

procedure which should be applicable to resolved iso-amarine to afford enantiopure 

diamine. 

 

2.3.2. Fractional crystallisation of 4,5-dihydro-2,4,5-triphenyl-1H-imidazole (iso-amarine, 

116) 

 

A range of chiral acids were screened in the fractional recrystallisation of iso-amarine. (R)-

(+)-acetyl-mandelic acid (173) and (R)-(+)-mandelic acid (172) were selected due to the 

success of the mandelate structure in our existing diamine resolution, along with camphor 

sulphonic acid (181); a popular resolving agent due to its wide availability and greater acidity 

than carboxylic acids. 
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Figure 40: chiral acids 

 

Addition of (R)-(+)-acetyl-mandelic acid (173) to the racemic iso-amarine (116) in ethanol did 

not result in the formation of any crystals; the salt formed presumably being too soluble to 

precipitate out. Camphor sulphonic acid (181) gave an excellent yield of salt (95% of 

theoretical yield based upon the precipitation of only one diastereomer). However, on 

decomplexation with sodium hydroxide, the iso-amarine (116) isolated had zero optical 

rotation. Comparative success was achieved with the use of (R)-(+)-mandelic acid (172). 

After diastereomeric salt (182) formation and decomplexation, iso-amarine (116) was 

isolated in 54% yield of theory, with an optical rotation of +43 (compared to a literature value 

of +46).111 The procedure was optimised, with a solvent change from ethanol to isopropanol 

and the inclusion of a recrystallisation of the salt, to afford (R,R)-iso-amarine (116R) in 80% 

yield with an optical rotation identical to the literature value (Scheme 60).  
 

 
 

Scheme 60: fractional crystallistion of (R)-iso-amarine 

 

The 1:1 composition and the diastereomeric purity of the salt (182) were confirmed by X-ray 

crystallography (Figure 41).  
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Figure 41: X-ray crystal structure of 1:1 (S)-mandelic acid-(R,R)-iso-amarine diastereomeric 
salt 

 

The optical purity of the resulting (R,R)-iso-amarine (116R) was confirmed by DCC mediated 

coupling with (R)-acetyl-mandelic acid. 1H NMR analysis of the crude reaction mixture 

showed the presence of only the (R,R,R)-diastereomer, confirming both the efficiency of the 

resolution and of the absence of any racemisation in the DCC coupling. 

 

A scaled up, analogous fractional crystallisation was performed with the (R) enantiomer of 

mandelic acid. This proceeded with identical yield to afford (S,S)-isoamarine (116S) (5.5 g, 

80% over salt formation/decomplexation). Furthermore, it was found that upon concentration 

of the basified aqueous phase after decomplexation of the salt, some of the mandelic acid 

starting material (1.7 g, 24%) crystallised and could be recovered by filtration. Thus, a 

portion of the chiral resolving agent can be recycled, increasing the efficiency and economy 

of the protocol. 
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2.3.3. Hydrolysis of (+)-(4R,5R)-4,5-dihydro-2,4,5-triphenyl-1H-imidazole [(R,R)-iso-amarine, 

116R] 

 

Pleasingly, one-pot acetylation and hydrolysis under Lifschitz’s and Bos’ conditions101 gave 

enantiomerically pure (S,S)-diamide 163S. Further hydrolysis using Williams’ and Bailar’s 

protocol92 gave 1.4 g of enantiomericallly pure (S,S)-diamine 124S (Scheme 61). 

 

 

 

Scheme 61: hydrolysis of (S,S)-iso-amarine to (S,S)-diamine 

 

As we had predicted, exchanging the mandelate group for a simple acetate group led to 

improved yields in the diamide to diamine hydrolysis step (49% from 34%).  

 

2.3.4. Conclusion 

 

We have developed two alternative novel syntheses of enantiopure 1,2-

diphenylethylenediamine 124; both of which give us access to gram amounts of the diamine 

and are arguably two of the best routes to the chiral diamine in the literature. After 

developing our initial protocol, we identified the limitations of our procedure and addressed 

these when returning to the synthesis. We have demonstrated that enantiopure iso-amarine 

can be accessed by the fractional crystallisation of the racemic iso-amarine and enantiopure 

mandelic acid. We have also improved the yield of the lowest yielding step in our procedure 

to increase the overall efficiency of the synthesis.  
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3. Catalytic Asymmetric Electrophilic Bromination 

 

3.1. Catalyst Synthesis 

 

With a large scale synthesis and resolution of 1,2-diphenylethylenediamine (124) completed, 

we turned our attention to the preparation of our asymmetric bromination catalysts IAM (111) 

and, more importantly, IBAM (113). Gram amounts of such catalysts were required to enable 

further screening of reaction conditions, derivatization of the catalyst and stoichiometric 

experiments.  

 

 3.1.1. Synthesis of 2-(2-Iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole or IAM (111) 

 

IAM (111) had previously been synthesised from 2-iodobenzoic acid (107) according to a 

literature proceedure.55,82 The acid was converted into the amide (108) via the acyl chloride 

in good yield. The amide (108) was then treated with triethyloxonium tetrafluoroborate 

(BF4OEt3) to form the imidate (183), which was condensed with 1,2-

diphenylethylenediamine (124) to form the chiral cyclic amidine moiety (Scheme 62). 

 

 
Scheme 62: synthesis of IAM (111) 

 

The imidate formation proved to be an inconsistent and thus, problematic step. The best 

yield for the transformation was recorded as 56%, but more commonly yields of between 30 

and 50% were observed. In our recent work, numerous attempts to form the ethyl imidate 
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resulted in failure to isolate the product and crude 1H NMR demonstrated the presence of 

only ~40% imidate product in the best of cases.  

 

It was hypothesized that the use of the analogous trimethyloxonium tetrafluoroborate 

(BF4OMe3) salt may improve the yield of the imidate formation. Not only is the trimethyl salt 

less hygroscopic than the triethyloxonium salt (thus reducing the possibility of water present 

in the reaction mixture), but its use eliminates the possibility of imidate decomposition back 

to the amide via β-elimination (Scheme 63). 

 

 

Scheme 63: decomposition of imidate via β-elimination 

 

As predicted, the use of trimethyloxonium tetrafluoroborate resulted in a considerable 

improvement in yield. On analysis of the reaction product after washing with diethyl ether, 

the imidate was observed to have formed in almost quantitive yield (99% by 1H NMR of the 

product mixture), without the need for further purification. The crude imidate (characterised 

by a shift in the 13C spectra from 171.3 ppm in the amide to 178.8 ppm in the O-methyl 

imidate) was taken through to the next step to form the amidine product, IAM (111), giving 

an overall yield for the two steps as 76%; a considerable improvement on the best results 

obtained with the triethyloxonium salt (53% over two steps). 

 

3.1.2. Synthesis of 2,6-Di-(4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)iodobenzene or IBAM 

(113) 

 

The substitution of triethyloxonium tetrafluoroborate with the trimethyl analogue was also 

applied to the original synthesis of IBAM (113).55 IBAM was synthesised from 2,6-dimethyl 

iodobenzene (185), which was oxidised to bis-acid 186 using a procedure previously 

reported for the bromo analogue,112 employing KMnO4 as oxidant in a mixture of tert-butanol 

and water (Scheme 64).   
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Scheme 64: oxidation of 2,6-dimethyliodobenzene (185) to 2-iodoisophthalic acid (186) 

 

Bis-acid 186 was then converted to the bis-amide 122 by formation of the bis-acyl chloride 

followed by quenching with aqueous ammonia solution under biphasic conditions. 

 

 

Scheme 65: formation of 2-iodoisophthalamide (122) 

 

The bis-amidine, IBAM (113), was formed from the bis-amide via the intermediate imidate 

188, using a procedure similar to that employed with the mono-analogue. In previous 

syntheses of IBAM (113), using triethyloxonium tetrafluoroborate and stirring for 48 h at 

room temperature, the best yield obtained was 47% over the two steps.55 Initially on 

substitution of the triethyloxonium salt with its trimethyl analogue we observed minimal 

reaction due to the limited solubility of both the bis-amide 122 and the trimethyloxonium salt 

in dichloromethane. However, it was found that heating the reaction mixture to reflux 

resulted in conversion to the bis-imidate 188 after 48 h (Scheme 66).On dissolving the crude 

imidate in ethanol and adding the chiral diamine (124), the bis-amidine product, IBAM (113) 

was formed in 68% yield over the two steps. This again is a considerable improvement on 

the poor to moderate yields obtained via the O-ethyl imidate salt. 
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Scheme 66: formation of IBAM (113) via the O-methyl imidate salt (188) 

 

However, despite the improved yield, the imidate (188) formation and subsequent diamine 

(124) condensation still proved to be a capricious reaction, occasionally failing and resulting 

in a large mixture of inseparable products. Thus, the existing IBAM (113) synthesis was still 

not deemed sufficiently robust to be used in a gram-scale preparation of our catalyst. It 

became clear that it would be necessary to formulate a completely new protocol if we were 

to ensure the success of a large scale procedure. 

 

3.1.3. Re-design of the synthesis of IBAM (113) 

 

We embarked on the re-design of the synthesis of IBAM (113) with the goal of producing a 

robust, high yielding procedure for synthesis of gram-amounts of our catalyst. Particular 

emphasis was placed on the final step to form the chiral amidine moieties, with an objective 

of minimizing loss of the valuable enantiopure diamine starting material (124). 

 

After reviewing the various starting materials available to us, we selected 1,3-

dicyanobenzene (189). Krizan and Martin113 had demonstrated that when 189 was treated 

with lithium diisopropylamide (LDA) in THF at -96 ºC, it underwent a directed lithiation; the 

lithium-proton exchange occurs exclusively at the position ortho to the two cyano groups 

(Scheme 67). Subsequent low temperature quenching of the lithiated species with a range 

of electrophiles afforded the expected 2-substituted products in good yields (68-83%).  
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Scheme 67: Krizan’s and Martin’s regiospecific functionalisation of 1,3-dicyanobenzene (189) 

 

We utilized this procedure for the regioselective introduction of iodine to form 2,6-dicyano-1-

iodobenzene (192) and in small scale trial reactions demonstrated the reproducibility of 

Krizan and Martin’s reported yield (69% of 2,6-dicyano-1-iodobenzene (192) after 

recrystallisation compared to a reported 79% by Krizan and Martin).  

 

However, we envisaged a number of modifications to Krizan’s and Martin’s protocol were 

necessary if we were to successfully apply the reaction to a large scale procedure: 

 

The solvent was changed from tetrahydrofuran (THF) to 2-methyltetrahydrofuran (mTHF) to 

remove the need for a solvent change in the work up, thus improving the efficiency of the 

procedure. mTHF is not miscible with water, whilst it still retains the relatively high polarity 

(dielectric constant of 6.97, compared to 7.52 for THF) and ion solvating ability of THF. 

Thus, it can be used as a solvent in both the reaction itself and the subsequent aqueous 

work up.  

 

The order of addition was reversed from Krizan’s and Martin’s procedure. In the original 

protocol it was reported that best results were obtained if a solution of 189 was added drop-

wise to a stirred solution of LDA. However, 189 required a relatively large amount of solvent 

to fully dissolve it (minimum dilution; 0.25 M) and consequently, as the scale of the reaction 

increased, the volume of the solution and the time required for its addition became 

unmanageably large. The lengthy addition procedure resulted in considerable 

decomposition of the lithiated intermediate (190) prior to quenching with iodine. On the other 

hand, LDA was available as a 1.8M solution. Thus we elected to add the LDA to a stirred 

solution of 1,3-dicyanobenzene (189) in order to reduce the lifetime of the unstable 

intermediate 190.  

 

It was anticipated that achieving and maintaining a temperature of -96 ºC (by use of a liquid 

nitrogen/methanol bath) would be practically difficult on a large scale. Indeed, we had 
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planned to carry out the iododination in a controlled laboratory reactor (CLR) which operates 

at a minimum temperature of -30 ºC. However, investigations into the possibility of raising 

the temperature of the reaction demonstrated that substantial decomposition of the lithiated 

intermediate occurred at temperatures elevated considerably from -90 ºC. At -30 ºC a much 

reduced yield of 41% was obtained. The crude reaction mixture contained a high number of 

impurities and required purification via flash column chromatography; a time-consuming and 

wasteful procedure on a large scale. The possibility of adding a 1,3-dicyanobenzene/iodine 

mixture to a stirred solution of LDA was also investigated as a method of reducing the 

lifetime of the lithiated intermediate and thus facilitating a higher temperature procedure. 

However, this order of addition resulted in incomplete reaction, 1H NMR analysis of the 

crude reaction mixture demonstrating approximately 20% conversion to the iodinated 

product. Thus, we were unable to increase the temperature of the reaction and were 

restricted to the use of a round bottomed flask and nitrogen/methanol bath for the reaction 

itself. 

 

However, the changes made to the solvent and the order of addition facilitated the 

successful directed iodination of 65 g of 1,3-dicyanobenzene (189) to afford 2,6-dicyano-1-

iodobenzene (192) in 64% yield (Scheme 68).  

 

 

Scheme 68: large scale iodination of 1,3-dicyanobenzene (189) 

 

The crude reaction mixture in mTHF was transferred directly to a CLR for the aqueous work-

up. After the aqueous washes, the crude product was purified by filtration through a silica 

plug and the filtrate was concentrated to a volume of ~400 mL. The desired product 

precipitated out as a pale beige powder and was collected by filtration. Thus, the need for a 

lengthy large scale chromatographic procedure was eliminated and an efficient gram-scale 

synthesis accomplished. 

 

With the bis-cyano compound 192 in hand, we examined a number of possibilities available 

to us to form the chiral imidazoline moieties in IBAM (113). Initially we explored the acid-
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promoted formation of the bis-imidate salt via the in situ generation of hydrochloric acid in an 

alcohol solution.  

 

 

Figure 42: acid-promoted formation of imidate salt 193 

 

However, our bis-cyano substrate 192 proved extremely unreactive to these conditions; 

stirring for one week produced a reaction mixture which was still mainly unreacted starting 

material. It was hypothesized that the two electron-withdrawing cyano groups on the 

benzene ring reduce the basicity of the nitrogens relative to that of a mono-substituted 

cyanobenzene. Thus the rate of acid promoted imidate formation is diminished.  

 

Accordingly, we investigated the possibility of basic imidate formation, in a methoxide 

catalysed synthesis of the bis-imidazoline (Scheme 69).114  

 

 

Scheme 69: attempted methoxide catalysed IBAM (113) formation 

 

Although the starting material was consumed, a complex mixture of products was produced 

which demonstrated evidence of SNAr at the position ipso to the iodine (Scheme 70).  

 

 

Scheme 70: SNAr of iodine with methoxide in 2,6-dicyanoiodobenzene (192) 

 



 94

Our initial failures demonstrated the unsuitability of our substrate 192 for both acid and base 

promoted imidate formation. Thus, we turned our attention to alternative methods of forming 

our IBAM catalyst (113) from 2,6-dicyanoiodobenzene (192). An attractive protocol (Scheme 

71) was published by Fujioka et al115 which reported the synthesis of imidazolines (198) from 

aldehydes (195), via formation of an aminal, 196, and its subsequent oxidation with NBS. 

The reaction presumably proceeds via an N-Br intermediate, 197, which eliminates HBr to 

form the C=N bond of the amidine. 

 

 
Scheme 71: Fujioka et al’s imidazoline synthesis 

 

Fujioka’s protocol was reported as clean and high-yielding for a range of aldehydes and was 

considered to be applicable to our electron deficient aromatic substrate.  

 

We therefore reduced our 2,6-dicyanoiodobenzene (192) to the corresponding bis-aldehyde 

199 with diisobutylaluminium hydride (DIBAL-H) (Scheme 72). 

 

 

Scheme 72: DIBAL-H reduction of 2,6-dicyanoiodobenzene (192) to 2-iodoisophalaldehyde 
(199) 

 

To remove the need for chromatography in a large scale procedure, the crude bis-aldehyde 

(199) was purified by formation of the bisulfite adduct (200, Scheme 73) and its precipitation 

from a solution of ethyl acetate, ethanol and water. Following filtration, washing and drying, 

the salt (200) was decomplexed with sodium hydroxide to afford the pure bis-aldehyde 199.   
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Scheme 73: formation of the bisulfite-aldehyde adduct, 200 
 

The reduction and purification procedure was carried out on a multigram scale to produce 

19 g of 2-iodoisophalaldehyde (199).  

 

Trial reactions of the imidazoline formation using Fujioka’s conditions were promising, 

yielding IBAM (113) in 51% yield after chromatography (Scheme 74).  

 

 

Scheme 74: initial attempt of IBAM (113) formation using Fujioka’s conditions 
  

However, analysis of the by-products revealed the presence of both unreacted starting 

material, 199, mono-imidazoline, 201, and, surprisingly, iso-amarine, 116 (Scheme 75).  

 

 
Scheme 75: by-products in IBAM (113) synthesis using Fujioka’s method 

 

It was apparent that much of diamine 124 had reacted to form the iso-amarine (116) 

impurity, leaving a portion of the aldehyde starting material unreacted. This resulted in only 

a moderate yield of IBAM (113). It was hypothesized that the iso-amarine or AM (116) was 

formed as a result of incomplete aminal (206) formation prior to the addition of NBS, thus 

leaving unreacted diamine 124 in the reaction mixture. It was proposed that this reacted with 
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the NBS to form “benzimine” (203), which rapidly coupled to further unreacted diamine 124 

(Scheme 76).  

 

 

Scheme 76: formation of iso-amarine (116) from 1,2-diphenylethylene diamine (124) 
  

In order to test this hypothesis, we stirred 1,2-diphenylethylene diamine (124) in deuterated 

chloroform with 1 equivalent of NBS. After stirring for 4 hours, crude iso-amarine (116) was 

obtained from the reaction mixture in 89% yield, thereby confirming our proposed 

mechanism. Thus, in order to reduce the iso-amarine (116) impurity, and thereby the 

efficiency of the reaction, full aminal (206) formation must be ensured before the addition of 

NBS.  

 

We proposed that due to the greater steric encumbrance of aminal formation in our 

substrate relative to any of Fujioka’s examples,115 the equilibrium between aldehyde (199) 

and aminal (206) does not lie as far to the right hand side (Scheme 77). 

 

 
Scheme 77: aldehyde (199)/aminal (206) equilibrium 
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Indeed, Fujioka et al noted that ortho substituted aromatic aldehydes gave considerably 

lower yields than their meta and para substituted analogues, prompting Fujioka to conclude 

that “the steric factor is more important than the electronic factor in this reaction”.115 

Therefore, although Fujioka did not find it necessary to remove water from the reaction, we 

hypothesized that in our system it was necessary in order to drive the equilibrium fully to the 

aminal product (206). We introduced an additional step in the reaction, conducting the initial 

aminal (206) formation in toluene, which was then concentrated in vacuo to remove the 

water by-product by formation of an azeotropic mixture. The resulting mixture was then 

taken up in dichloromethane and stirred with NBS. This two-step procedure eliminated the 

majority of the iso-amarine (116) by-product and resulted in the isolation of the desired 

IBAM product (113) in 83% yield (Scheme 78).   

 

 
 

Scheme 78: optimised synthesis of IBAM (113) from aldehyde 119 
 

Again, chromatography was eliminated in the purification procedure, the IBAM (113) instead 

being purified by recrystallisation from an ethanol/water mixture. This protocol was 

successfully applied to a large scale synthesis to produce 25 g of our catalyst (113). 

 

Thus, by a complete re-design of the synthesis of our catalyst IBAM (113), we had 

successfully achieved an efficient large scale preparation (Scheme 79). We increased the 

overall yield of IBAM (113) from commercially available starting material from 14% to 37% 



 98

and, perhaps more significantly, we developed a high yielding and robust procedure for the 

incorporation of the chiral diamine 124 into the catalyst structure. 

 

 

Scheme 79: re-designed IBAM (113) synthesis 

 

We also explored the possibility of using this protocol for the synthesis of IBAM (113) 

analogues incorporating different diamines or amino-alcohols into the catalyst. Attempts to 

form the analogues 207 and 208 (Figure 43) from the bis-aldehyde intermediate, 199, both 

resulted in imine formation (212 and 214, respectively, Scheme 80) on addition of (1R,2R)-

1,2-diaminocyclohexane (211) or (1R,2S)-2-amino-1,2-diphenylethanol (213) rather than 

forming the desired aminal 209 or hemiaminal 210 (Figure 43). The imine and aminal 

species were distinguishable using 1H NMR, by comparing the shift of the imine proton (8.64 

and 8.24 ppm for 212 and 214, respectively) to that of the aminal (5.81 ppm for 206). 

 

 

Figure 43: 1,2-diaminocyclohexane and 2-amino-1,2-diphenylethanol analogues of IBAM (207 
and 208)  and their aminal precursors (209 and 210) 
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Scheme 80: attempted syntheses of IBAM analogues 207 and 208 

 

Subsequent addition of NBS to the resulting imines, 212 and 214, failed to afford the desired 

catalysts, 207 and 208, but instead resulted in complex mixtures of products. In the case of 

(1R,2R)-1,2-diaminocyclohexane (211), the preferential formation of the imine is due to the 

high ring-strain introduced on formation of a trans-bicyclic aminal intermediate, 209. The 

failure of 2-amino-1,2-diphenylethanol (213) to form the hemiaminal on reaction with 

aldehyde 199 may be a result of increased steric clashing between the cis-phenyl groups 

upon ring closure, or the reduced nucleophilicity of the oxygen relative to that of nitrogen. 

 

However, further work by the Braddock group has demonstrated the successful application 

of the protocol to the synthesis of the (1R,2R)-1,2-di-tert-butylethylenediamine analogue 

(215, Figure 44) of IBAM (113).116 This indicates that the procedure is successful for any 

diamine substrates which can undergo aminal formation without any significant increase in 

steric clashes or torsional strain. 

 

Figure 44: (1R,2R)-1,2-di-tert-butylethylenediamine analogue of IBAM 
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3.2. Investigations into hypervalent iodine mediated catalytic asymmetric bromination 

 

In previous work,55 enantioselectivity was only observed in IBAM (113) catalysed 

bromolactonisation on reaction of a 0.25 M or 0.025M solution of the substrate 114 in 

dichloromethane, at -78 ºC, with one equivalent of NBS and a catalyst loading of 1 mol% 

(Scheme 81). 

 

 
Scheme 81: enantioselective bromolactonisation with R,R-IBAM 

 
Thus, these conditions were taken as the starting point for our investigations. 
 

3.2.1. Extension of the substrate library 

 

One of the initial goals in our investigations into catalytic asymmetric bromination was the 

extension of our substrate library for the bromolactonisation reaction to incorporate a wider 

range of unsaturated carboxylic acids.  

 

4-Phenylpent-4-enoic acid (216, Figure 45) had been previously synthesized and screened 

as a possible substrate for the asymmetric bromolactonisation reaction. It was hypothesized 

that this was an attractive substrate for asymmetric induction on formation of the bromonium 

ion due to the greater steric bulk around the double bond. This should induce a greater 

differentiation between the diastereomeric transition states of Br+ transfer to the alkene and 

thus lead to a higher degree of enantioselectivity. However, in previous work the racemic 

lactone had failed to separate into its enantiomers on the chiral HPLC, rendering the 

substrate unsuitable for screening in our asymmetric catalysis. However, by use of a 

different chiral HPLC system, we were able to achieve separation and could thereby screen 

the substrate 216 under asymmetric bromolactonisation conditions for enantioselectivity 

(Table 4).  
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Figure 45: asymmetric bromolactonisation substrates 

 

As an alternative method of analysis, we also proposed the synthesis of a substrate in which 

any asymmetric induction could be measured by 1H NMR. We hypothesized that substrates 

217R and 217S (Figure 45), which both already contained a chiral center, would afford a 

diastereomeric mixture of products upon bromolactonisation. The ratio of the diastereomers 

should, in theory, be measurable by integration of the 1H NMR spectrum. When the 

bromolactonisation is catalysed by IBAM (113), any asymmetric induction in Br+ delivery 

should result in a differential perturbation of the diastereomeric product ratio for the two 

enantiomers of the substrate. Thus, we hoped to develop a more efficient tool for screening 

any enantioselectivity in our catalytic bromination.  

 

Accordingly, the (R)- and (S)-2-allyloxypropionic acids (217R and 217S) were synthesized 

from (R)- and (S)-ethyl lactate (218R and 218S) via the 2-allyloxypropionic acid ethyl esters 

(219R and 219S, Scheme 82). 

 

 
Scheme 82: synthesis of 2-allyloxypropionic acid substrates (217R and 217S) 

 

The enantiopurity of the product was confirmed by re-esterification of the (S)-acid substrate 

(217S) via a DCC mediated coupling (Scheme 83) and comparison of the resulting ester’s 

optical rotation (-74.4, ethanol) to the literature value (-73.6, ethanol).117  

 

 
 

Scheme 83: DCC coupling to re-form (S)-2-allyloxypropionic acid ethyl ester (219S) 
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Pleasingly, on reaction with NBS, the substrate afforded the corresponding bromolactone as 

a diastereomeric mixture (220 and 221, Scheme 84). Both protons attached to the tri-

substituted carbons (C-2 and C-5) of the ring appeared as distinct resonances for the two 

diastereomers and thus the diastereomeric excess was determinable by simple integration 

of the crude mixture.  

 

Scheme 84: bromolactonisation of (R)-2-allylpropanoic acid (217R) 

 

On standing the (2R)-bromolactone product mixture at 0 ºC, a portion of the colourless oil 

solidified to form colourless needles. Isolation of these crystals and subsequent 1H NMR 

analysis revealed them to be completely composed of the major diastereoisomer. X-ray 

crystallography identified the solid as the (2R,5R)-5-bromomethyl-3-oxa-2-methyl-δ-

pentano-5-lactone (220, Figure 46), enabling us to assign our major and minor 

diastereomeric products in the bromolactonisation of either enantiomer of 217 as (2R*,5R*) 

and (2R*,5S*) respectively. 
 

 
 

Figure 46: X-ray crystal structure of (2R,5R)-5-bromomethyl-3-oxa-2-methyl-δ-pentano-5-
lactone (220) 
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The bromolactonisation was also appreciably catalysed by IBAM (113) at room temperature 

(Table 4), although no differentiation in the diastereomeric ratio was observed on using 

different hands of the catalyst. Thus (R)- and (S)-2-allyloxypropionic acids (217R and 217S) 

were also deemed suitable substrates to screen in the asymmetric catalytic bromination 

reaction. 

 

 Table 4: catalytic bromolactonisation of extended substrate library
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ee 

2 
O

OH

O

217S  
 

- 
CDCl3 

(0.25M) 
RT 

20 min 

1.5 h 

20% 

65% 

21% 

de 

3 217S 220/221 
R-IBAM 113 

(1 mol%) 

CDCl3 

(0.25M) 
RT 

20 min 

1.5 h 

60% 

77% 

28% 

de 

4 217S 220/221 
S-IBAM 113 

(1 mol%) 

CDCl3 

(0.25M) 
RT 1 h 70% 

28% 

de 

5 217S 220/221 
R-IBAM 113 

(5 mol%) 

CH2Cl2 

(0.25M) 
-78 ºC 8 h 17% 

33% 

de 

6 217S 220/221 
S-IBAM 133 

(5 mol%) 

CH2Cl2 

(0.25M) 
-78 ºC 8 h 18% 

39% 

de 

 
a - all reactions carried out using 1 eq. of NBS 

 

Low temperature asymmetric bromolactonisation of substrate 217S demonstrated a small 

perturbation of diastereomeric excess on changing from (R)-IBAM (113R) to (S)-IBAM 

(113S) (6%, c.f. entries 5 and 6, Table 4). Disappointingly the bromolactonisation product 

222 of 4-phenylpent-4-enoic acid (216, entry 1) failed to demonstrate any evidence of 
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enantioselectivity. However, although no significant enantioselectivity was observed for the 

new substrates, we have successfully increased the range of unsaturated carboxylic acids 

available to us for screening purposes. 

 

3.2.2. Further screening of catalytic bromination conditions 

 

Although an extremely vigorous screening of the conditions for our catalytic bromination 

reaction had previously been undertaken,55 there were a limited number of further variations 

which we wished to investigate. We desired a more thorough screen of temperatures, the 

catalytic bromination having in the past only been carried out at room temperature or -78 ºC 

(Table 5, entries 2-4). We also had identified toluene (Table 5, entry 5) as an attractive 

solvent for our catalysis reaction since Sakakura et al had demonstrated it to be an excellent 

choice of solvent for the asymmetric iodocyclisation of polyprenoids.56 Finally, we wished to 

screen a range of concentrations for the IBAM (113) catalysis reaction, to ascertain the 

effect of dilution on the catalyst’s asymmetric induction (Table 5, entries 6-9). Our screening 

of these variables focused on the bromolactonisation of 114, which had previously yielded 

enantio-enriched bromolactone 115 after reaction under standard asymmetric catalytic 

bromination conditions (Table 5, entry 1). 
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Table 5: further screening of variables in IBAM (113)-catalysed bromolactonisation
a
 

 

 

 

Entry Catalyst Loading Solvent Conc. Temp. Time Yield Ee 

1 R-IBAM 1 mol% CH2Cl2 0.25 M - 78 ºC 8 h 43% 8% 

2 R-IBAM 1 mol% CH2Cl2 0.25 M -45 ºC 15  h 60% 7% 

3 R-IBAM 1 mol% CHCl3 0.25 M -45 ºC 15  h 68% 8% 

4 S-IBAM 1 mol% acetone 0.25 M - 45 ºC 8 h 52% <5% 

5 R-IBAM 5 mol% toluene 0.025 M - 78 ºC 8 h 44% <5% 

6 R-IBAM 1 mol% CH2Cl2 0.25 M - 78 ºC 8 h 55% 5% 

7 R-IBAM 1 mol% CH2Cl2 0.025 M - 78 ºC 8 h 27% 11% 

8c R-IBAM 1 mol% CH2Cl2 0.025 M - 78 ºC 8 h 22% 8% 

9 R-IBAM 5 mol%b CH2Cl2 0.0025 M - 78 ºC 24 h 51% 12% 

 
a – all reactions were carried out using 0.5 eq. NBS 

b - catalyst loading increased due to slow reaction rate at high dilution 
c – repeat reaction 

 

Disappointingly, our wider screen of conditions failed to highlight any significant increase in 

the asymmetric induction of our IBAM (113) catalysed bromination. A relationship between 

concentration and enantioexcess was noted, the ee increasing slightly at higher dilutions. 

Although no such inferences were drawn at the time, with retrospect it is apparent that this 

trend is in agreement with our proposed mechanism of racemisation via bromonium ion-

alkene Br+ exchange. It is to be expected that such exchange would be concentration 

dependent; the degree of Br+ transfer decreasing as the dilution of the reaction mixture 

increases. Thus, the observed enantioexcess of the product would be expected to increase 

at lower concentrations. We selected a concentration of 0.025 M, representing compromise 

between observed enantioselectivity and practicality, as an optimum concentration for the 

IBAM (113) catalysed asymmetric bromination reaction. 

 

 

 

 



 106

3.2.3. Investigation of an alternative Br+ source     

 

2,4,4,6-Tetrabromo-2,5-cyclohexadienone (TBCO, 223) was investigated as an alternative 

source of Br+ to NBS in the catalytic bromination reaction. However, comparison of the IAM 

(111)-catalysed bromolactonisation to the uncatalysed control demonstrated almost no 

differentiation between the rates of the reactions (Table 6). Thus, due to the high 

background reaction, TBCO (223) was rejected as a possible alternative Br+ source.  

 

Table 6: investigation into the use of TBCO (223) as Br
+
 source

a 

 

 

 

Catalyst Loading Concentration Time Conversion 

- - 0.25 M 17 min 51% 

R-IAM (111R) 1 mol% 0.25 M 18 min 49% 

 
a – all reactions carried out using 1 eq. of TBCO  

 

After failing to improve the enantioselectivity of the IBAM (113)-catalysed asymmetric 

bromination by extended screening of a wider range of variables, we returned to one of our 

original goals of developing a better understanding the nature of our catalytic intermediate. It 

was hoped that, on achieving this, we would be able to make more informed alterations to 

optimise our reaction conditions and catalyst structure. 

 

 

3.3. Stoichiometric addition of NBS to the catalysts 

 

As detailed earlier in the introduction, there is some ambiguity in our catalytic system as to 

whether the bromine is delivered from iodine, via a hypervalent I(III)-Br bond, or from the 

amidine nitrogen. As this appears to be of key importance to the degree of enantiocontrol 

observed, it is desirable that we understand the mechanism of bromine delivery in order to 



 107

effectively design a more enantioselective system. We had therefore synthesized our 

simplest hypervalent iodine-based bromination catalyst, IAM (111) and its iodine free 

analogue, iso-amarine (116), with a view to adding stoichiometric NBS and observing the 

catalyst-Br+ adduct formed.  

 

3.3.1. Stoichiometric addition of NBS to iso-amarine (116) 

 

 

Scheme 85: stoichiometric addition of NBS to iso-amarine (116) 
 

On addition of one equivalent of NBS to a solution of iso-amarine (116) in deuterated 

chloroform, a bright yellow/green solution was formed from the colourless starting materials. 

After stirring for 15 minutes, 1H NMR analysis revealed the complete conversion of NBS to 

succinimide, indicating transferal of Br+ to iso-amarine. However, due to an aromatic region 

which appears as an overlapping multiplet in the spectra of both iso-amarine (116) and the 

iso-amarine-Br+ adduct (117), very little further information could be deduced from the 1H 

NMR spectrum. The 13C spectrum was more instructive, demonstrating extreme broadening 

of many of the peaks on addition of the NBS (Figure 47 and Figure 48).  
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Figure 47: 

13
C spectrum of iso-amarine (116) in CDCl3 

 

 

 

Figure 48:
 13

C spectrum of iso-amarine (116) 15 mins after addition of NBS in CDCl3 
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The broadening was most evident in the resonance belonging to the quaternary carbons on 

the phenyl rings, CCHN (143.0 ppm) and to a greater degree in the resonance of the 

amidine carbon (163.2 ppm), which was broadened to the extent where it was no longer 

detected in the spectra (Figure 49). The PhCHN carbons are not evident in either spectra, 

presumably due to broadening of the peaks as a result of proton or Br+ exchange between 

the amidine nitrogens on a timescale similar to that of the 13 C relaxation. 

 

 

Figure 49: iso-amarine-Br
+
 adduct (117) 

 

3.3.2. Stoichiometric addition of NBS to IAM (111) 

 

 

Scheme 86: stoichiometric addition of NBS to IAM (111) 
 

Stoichiometric NBS was added to IAM (111) in deuterated chloroform at room temperature. 

Again, the solution changed from colourless to bright yellow/green in colour on addition of 

NBS and 1H NMR analysis demonstrated complete conversion of NBS to succinimide after 

15 minutes. The resonances for the protons of the iodobenzene ring are out-lying from the 

rest of the aromatic resonances in the 1H NMR spectrum of IAM (111) and consequently 

their changes in ppm on addition of NBS can be observed. However, whilst the aromatic 

protons in question did demonstrate significant shifting (Figure 50 and Figure 51), diagnostic 

of the formation of a distinct IAM (111)-Br+ adduct, this provides no further insight into 

whether the adduct contains an I(III)-Br (112) or N-Br bond (224).  
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Figure 50: 
1
H spectrum of IAM (111) in CDCl3 

 

 

Figure 51: 
1
H spectrum of IAM (111) 15 mins after addition of NBS in CDCl3 

N.B. the peak at 2.70 ppm is due to the succinimide by-product present in the reaction mixture. 
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The 13C NMR spectrum of IAM (111) also demonstrated considerable changes on addition 

of NBS (Figure 53, Figure 54). These were generally analogous to those observed in the 

iso-amarine (116)/NBS system. The resonances belonging to the three carbon atoms 

adjacent to the amidine nitrogens (164.8 ppm and 75.8 ppm) and the quaternary carbons of 

the phenyl rings CCHN (142.8 ppm) are broadened to the extent to which all three 

resonances no longer appear in the spectra of the IAM (111)-Br+ adduct (Figure 52). 

 

 

Figure 52: IAM (111)-Br
+
 adduct 

 

The carbon bonded to the iodine was shifted from 94.6 ppm in IAM (111) to 95.8 ppm on 

addition of NBS. Whilst this downfield shift is consistent with the expected de-shielding of 

the carbon on formation of a hypervalent species, it is of considerably smaller magnitude 

than the shifts observed on the formation of the bromoiododinanes 103 (112.1 ppm) and 

105 (109.9 ppm) from their carbinol precursors 102 (93.3 ppm) and 104 (90.6 ppm). 
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Figure 53: 
13

C spectrum of IAM (111) in CDCl3 

 

 

Figure 54: 
13

C spectrum of IAM (111) 15 mins after addition of NBS in CDCl3 

N.B. the peaks at 177.6 ppm and 29.6 ppm are due to the succinimide by-product present in the 

reaction mixture. 
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It is hypothesised that the general line broadening and disappearance of certain peaks in 

the 13C spectra is due to the existence of a system in which Br+ is exchanging between 

catalyst molecules. It is suggested that we observe a time averaged signal over a range of 

species in which Br+ is bonded to the catalyst in differing locations (i.e. either nitrogen of the 

amidine, or the iodine) and in differing degrees, encompassing both the distinct catalyst-Br+ 

species and the intermediates of Br+ exchange. The observations that the broadening 

occurs primarily at the carbon atoms in close proximity to the amidine nitrogens and that 

both catalyst-Br+ adducts demonstrate similar broadening patterns suggests that a 

significant portion of the IAM (111)-Br+ adduct is present as the N-Br species. It is noted that 

in concentrated solutions the amidine moiety could feasibly transfer bromine in a chain 

mechanism analogous to that of the Grotthus mechanism of proton transfer exchange in 

liquid water (Figure 55). This would facilitate a dynamically exchanging system, as implied 

by our observations.  

 

 

 

Figure 55: chain mechanism of Br
+
 transfer 

 

The addition of two equivalents of NBS to iso-amarine (116) also demonstrates full 

conversion of NBS to succinimide after 20 minutes. This indicates the possibility of the 

existence of a di-brominated iso-amarine species 225 (Scheme 87). Additionally, the 

observation that the succinimide peak is considerably broadened suggests that there may 

be some exchange of Br+ back to the succinimide anion (88) in the absence of an available 

proton. 

 

 

Scheme 87: formation of di-brominated iso-amarine (225) 
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3.3.3. Attempted isolation of the active brominated species 

 

It became clear to us that although we could draw inferences from observing our 

stoichiometric additions by 1H and 13C NMR, no unambiguous conclusions could be made 

regarding the true structure of the catalytic intermediate using these methods. We 

envisaged that the only method which would give us conclusive evidence of the existence of 

an I(III)-Br or N-Br bond was X-ray crystallography of the catalytic intermediate. Thus, we 

turned our attention to the isolation of the catalyst-Br+ adducts with the goal of fully 

characterizing them.  

 

It was originally attempted to isolate the brominated iso-amarine species, 117, by removal of 

succinimide with an aqueous wash followed by concentration of the organic phase to yield a 

yellow/orange amorphous solid. However, NMR analysis and mass spectroscopy of the solid 

indicated extensive decomposition had occurred over the work up, resulting in a complex 

mixture of products.  

 

Due to the instability of the intermediates to an aqueous work up, we investigated the use of 

a solvent system which would allow the precipitation of either the catalyst-Br+ adduct or 

succinimide. Stoichiometric additions were carried out in chloroform, chloroform/hexane, 

dichloromethane/hexane, diethyl ether, ethanol and ethanol/water, all with negative results. 

After a review of the current literature we identified a procedure reported by Neumer,118 in 

1972, which appeared to be suitable for our purposes. Neumer precipitated succinimide 

from carbon tetrachloride at 0 ºC in the preparation of an N-bromoimidazole. With the 

addition of a small amount of chloroform to aid the solubility of the catalyst species (iso-

amarine, 116 or IAM, 111), we were able to precipitate 92% of the theoretical mass of the 

succinimide (90) from the reaction mixture. The mixture was filtered and the filtrate 

concentrated to afford the catalyst-Br+ adduct (Scheme 88).  
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Scheme 88: isolation of the catalyst-Br

+
 adduct 

 

Attempted isolation of the iso-amarine-Br+ adduct (117) by this procedure again produced a 

mixture of decomposition products, demonstrated by 1H NMR analysis of the yellow/orange 

solid obtained. The considerable reduction of the integration of the singlet belonging to the 

NCH protons relative to the integration of the aromatic region led us to believe that a major 

decomposition product of the active brominated species is the analogous imidazole 228 

(Scheme 89). This decomposition route requires the presence of a base to remove the 

proton; a function which is likely to be fulfilled by a further molecule of iso-amarine (117). 

 

 
Scheme 89: decomposition of N-bromoiso-amarine 117 to imidazole 228 

 

Indeed, if one equivalent of TFA was added to the iso-amarine (116)/NBS mixture, both the 

appearance of decomposition products and the loss of activity of the system as a source of 

electrophilic bromine were significantly slowed. 
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Thus, attention was briefly turned to the isolation of an N-bromoamidine in which elimination 

of HBr was not possible. There were reports in the literature119 of the isolation of N-bromo 

amidine 229 (Figure 56) and, although there was incomplete characterisation of the isolated 

species, this seemed like a promising candidate for isolation. 

 

 

Figure 56: N-bromo-N,N′-diphenylformamidine  

 

However, on addition of NBS and removal of succinimide, the major product isolated was 

identified by NMR and mass spectroscopy to be the result of bromination of one of the 

aromatic rings (231, Scheme 90). It seems that the conjugation of the amidine nitrogen lone 

pairs into the aromatic rings activate them sufficiently to electrophilic attack for self-

bromination to occur in the absence of a more active substrate. 

 

 
Scheme 90: electrophilic aromatic bromination of N,N′-diphenylformamidine  

 

Our variation on Neumer’s procedure was applied with considerably more success to the 

isolation of the IAM-Br+ adduct (112 or 224). A yellow foam was isolated on removal of the 

solvent which, minus the succinimide peaks, had a NMR identical to that obtained on mixing 

IAM (111) with NBS directly. No decomposition of the adduct was observable by NMR. The 

species’ IR and UV spectra were taken to gain full characterisation of the product. The IR 

spectrum demonstrated little change from the spectrum observed with IAM (111) alone other 

than a new peak of medium strength resonating at 909 cm-1. N-Br bonds in N-brominated 

amines have previously been reported as resonating at frequencies of 670-700 cm-1, 

however, there are no literature reports of N-Br stretching frequencies in amidines. Any I-Br 

stretch should appear well below the fingerprint region due to the large reduced mass of the 

atoms in the bond, and thus is likely not to be observable in our spectrum. UV proved more 

revealing, two peaks observable in the spectra of the product, one at 236 nm (IAM (111) 

gives one peak at 236 nm) and a smaller, broader peak at 283 nm. A search of literature 
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provided UV data for N-Br bonds (288 nm in mono-N-bromotaurine)120 and for compounds 

containing hypervalent I-Br bonds (205 and 235 nm for iodinane 105 and 200, 235, and 332 

nm for 1-bromo-1,3-dihydro-5-methyl-3,3-bis(fluoromethyl)-1,2-benziodoxole).63 Comparison 

of the data does seem to suggest the formation of an N-Br over that of an I(III)-Br bond, this 

species giving a better match for our observed results. However, whilst such UV data 

confirms the formation of a new bond on addition of NBS to IAM (111), it does not 

conclusively confirm its type as no information is available for comparison for N-

bromoamidines or nitrogen containing hypervalent iodine compounds. 

 

Recrystallisation of the IAM-Br+ adduct (112 or 224) was attempted and resulted in the 

isolation of a yellow solid which, as a result of its NMR spectrum, along with its solubility in 

polar, protic solvents such as ethanol, but extreme insolubility in chloroform, was 

hypothesized as being the hydrobromide salt of the active brominated catalyst (232 or 233). 

 

 

Figure 57: hydrobromide salts of the proposed active brominated catalytic intermediates 
 

Frustratingly, despite screening a variety of solvent permutations, crystals suitable for X-ray 

crystallography could not be obtained.  

 

3.3.4. Lifetime of the iso-amarine and IAM-Br+ adducts 

 
A series of stoichiometric additions of NBS to both the catalyst IAM (111) and iso-amarine 

(116) were undertaken to determine the relative stabilities of the catalyst-Br+ adducts 

formed. NBS was added to a solution of the catalyst in deuterated chloroform and the 

solution was stirred in darkness at room temperature for a measured period of time, t (Table 

7). After the aging of the solution, substrate was added and its conversion to bromo-lactone 

measured by 1H NMR to determine the amount of active brominating species still present in 

the solution. 
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Table 7: determination of the lifetime of the catalytic intermediates 
 

 

 

 

These results clearly show that whilst both species are reasonably stable, the iodinated 

compound, IAM (111), decomposes considerably more slowly than its iodine free analogue, 

116. This is an encouraging result; such marked differences in stability suggesting that the 

environment of the bromine is different in the two active species and thus implying at least 

some of the bromine is bonded in IAM (111) via a bond to hypervalent iodine rather than 

directly bonded to the amidine nitrogen. 

 

A portion of our isolated IAM-Br+ adduct (112 or 224) was used as a stoichiometric 

brominating agent in the bromolactonisation of cyclopenten-2-yl acetic acid (114) at -78 ºC 

in dichloromethane (Scheme 91). Bromination proceeded to give 36% yield (<5% ee) of 

bromolactone 115, a result comparable to 46% yield obtained with the catalytic system. 

Conversion of substrate to 

bromolactone. 

Decomposition products evident 

by NMR? 

t 

 

IAM (111) 

 

 

AM (116) 

 

 

IAM (111) 

 

 

AM (116) 

 

15 min - - No No 

45 min - 100% No No 

5 h - 67% No Yes 

15 h 100% 55% No Yes 

24 h 80% 52% Trace Yes 
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Scheme 91: stoichiometric bromolactonisation reaction with IAM-Br
+
 adduct (112 or 224) 

 

However, on attempted recovery of the IAM catalyst (111) a 2:5 ratio of imidazole (234) to 

IAM (111) was obtained. Whilst confirming the elimination of HBr to form the imidazole as 

the major decomposition route of the brominated intermediate, this raises questions as to 

whether such decomposition occurs over the catalysis reaction. This would lead to the loss 

of enantioselectivity if an achiral imidazole was responsible for the delivery of any bromine 

to the substrate. Screening of imidazole 234 for catalytic activity demonstrated only 

moderate rate acceleration. A catalytic amount (1 mol%) of imidazole 234 with stoichiometric 

NBS demonstrated 40% conversion of 4-phenylpent-4-enoic acid (216) to its bromolactone 

222 in 20 min (Scheme 92), compared to 100% conversion in 20 min with IAM (111) as 

catalyst, and 30% conversion in 50 min with NBS alone. 

 

 

Scheme 92: screening imidazole 234 for catalytic activity 
 

Thus, it is possible that decomposition of our brominated asymmetric catalyst, IBAM (113)-

Br+, to form an achiral bis-imidazole 235 (Scheme 93) may lead to a drop in both the 

observed ee and yield of our bromination reaction. This was obviously a pressing concern 

which was necessary to address. 
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Scheme 93: possible route of IBAM (113) decomposition 

 

However, we suspected that the decomposition to the imidazole occurs primarily as a result 

of the extended manipulation of the unstable IAM-Br+ adduct (112 or 224) rather than being 

a process that would occur over the course of the bromination reaction itself. In order to test 

this theory, we conducted the low temperature bromination of lactone 114 with 

stoichiometric IBAM (113) and NBS (c.f. section 3.3.7.). Analysis of the crude reaction 

mixture demonstrated the absence of any decomposition products and 1H NMR analysis 

revealed the expected integration of 23:4 of the aromatic protons to the PhCH protons.  

 

3.3.5. Proof of rapid Br+ exchange between catalyst molecules 

 

A portion of the isolated IAM-Br+ (112 or 224) adduct was added to one equivalent of IAM 

(111) in deuterated chloroform (Scheme 94). 

 

 

Scheme 94: investigation into Br
+
 exchange between catalyst molecules 

 

If exchange of Br+ between the molecules occurs on a slower timescale than that of the 1H 

NMR spectroscopy, then two distinct species should be observed in the spectra, i.e. 

brominated (112 or 224) and unbrominated IAM (111). However, if our theory of rapid 

exchange is accurate, a single species should be observable, with peaks at an intermediate 

chemical shift of those in the brominated and unbrominated species. As hypothesized, 1H 

NMR analysis of the mixture after 15 minutes demonstrated the presence of a single 

component with averaged resonances between those of IAM (111) and IAM-Br+ (112 or 224) 

This confirms our conception of the catalyst/Br+ system as rapidly exchanging Br+ between 

catalyst molecules.  
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3.3.6. Stoichiometric additions of NBS to IBAM (113) 

 

Stoichiometric addition of NBS to IBAM (113) in deuterated chloroform at room temperature 

also resulted in the formation of a yellow/green solution from the colourless starting material. 
1H NMR analysis after 30 minutes demonstrated the complete conversion of NBS to 

succinimide. The broadening of the 1H NMR spectrum of IBAM (113) on the addition of NBS 

is even more pronounced than in the iso-amarine (116) and IAM (111) systems. The PhCHN 

protons, which appear as a broad singlet in the spectrum of IBAM (113), broaden even 

further on addition of NBS (Figure 58 compared to Figure 59). In the IBAM-Br+ adduct they 

appear as a main peak with a pronounced shoulder, possibly indicating an inequivalence in 

the environments of these protons in the adduct.  
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Figure 58:

 1
H spectrum of IBAM (113) in CDCl3 

 

 
Figure 59: 

1
H spectrum of IBAM (113) 30 mins after addition of NBS in CDCl3 

  N.B. the peak at 2.71 ppm is due to the succinimide by-product. 
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The 13C NMR spectrum (Figure 61 compared to Figure 60) again demonstrates the 

broadening of a number of the carbons (N-C(Ph)=N, CCHN, C-I) in a similar manner to iso-

amarine (116) and IAM (111), suggesting a similarly dynamic system. 

 

 
Figure 60: 

13
C spectrum of IBAM (113) in CDCl3 

 

 
Figure 61: 

13
C spectrum of IBAM (113) 30 mins after addition of NBS in CDCl3 

N.B. the peaks at 177.2 ppm and 29.5 ppm are due to the succinimide by-product.  
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Application of our procedure for the isolation of the catalyst-Br+ adduct to the IBAM (113) 

catalyst proceeded with only limited success. The addition of NBS to IAM (111) and iso-

amarine (116) had, in both cases, been easily monitored by TLC. Both IAM (111, Rf = 0.48, 

ethyl acetate) and iso-amarine (116, Rf = 0.34, 1:1 petrol:ethyl acetate) were consumed after 

30 minutes and a new component was formed (Rf = 0.65, ethyl acetate, Rf = 0.68, 1:1 

petrol:ethyl acetate, respectively) which were presumably the catalyst-Br+ adducts. Addition 

of one equivalent of NBS to IBAM (113) and subsequent TLC analysis of the reaction 

mixture after 30 minutes also demonstrated the formation of a new component (Rf = 0.58, 

ethyl acetate). However, TLC also revealed incomplete consumption of the IBAM starting 

material (113, Rf = 0.15, ethyl acetate) after stirring at room temperature for two hours, 

despite full conversion of the NBS to succinimide. This observation can only be explained by 

the presence of the two amidine moieties in IBAM (113) facilitating the formation of an 

IBAM-2Br+ adduct such as 236, 237 or even 238. 

 

 
Figure 62: di-brominated IBAM species 

 

In such a system where only one equivalent of NBS has been added, there will necessarily 

be some unbrominated IBAM (113) in addition to mono- and di-brominated catalyst. 

However, the rapid exchange of Br+ results in only one, time averaged, species being visible 

by 1H and 13C NMR. After precipitation of the succinimide and concentration of the filtrate, 

NMR analysis of the resulting adduct demonstrated a single major product which was 

analogous to the spectra in figures 59 and 61 with the exception of the succinimide by-

product. This fascinating, but extremely frustrating system, failed to produce any crystals 

suitable for X-ray crystallography on attempted re-crystallisation from a range of solvents.  

 

3.3.7. Stoichiometric Asymmetric Bromination 

 

After our failure to isolate our IBAM-Br+ adduct, we proceeded with investigations into the 

low temperature (-78 ºC) bromolactonisation of cyclopenten-2-yl acetic acid (114) with a pre-

mixed solution of NBS and a stoichiometric amount of IBAM (113) (Scheme 95). The aims of 
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this experiment were; (i) to ensure our catalyst underwent the transfer of Br+ in the absence 

of any decomposition of IBAM (113) to the imidazole (235) (ii) to ascertain if the 

stoichiometric reaction resulted in any improved enantioselectivity in the bromolactonisation 

of 114 from the observed 11% ee with a catalyst loading of 1 mol%. 

 

 

 
Scheme 95: use of a pre-mixed solution of 1:1 IBAM(113)/NBS as a stoichiometric brominating 

agent 
 

Our first objective was achieved as detailed earlier (section 3.3.4.). On analysis of the 

enantioexcess of the bromolactone product 115, we were surprised to find an enantiomeric 

excess of <5%. We probed this unexpected phenomenon further, carrying out a standard 

asymmetric bromolactonisation reaction with the usual order of addition of reagents (i.e. 

NBS last, no pre-mixing of the catalyst and NBS) and a stoichiometric amount of IBAM 

(113). This also resulted in the production of racemic bromolactone. Evidently the 

enantioselectivity of the reaction is dependent on the stoichiometry of the catalyst.  

 

 

3.4. Investigations into the relationship between catalyst loading and 

enantioselectivity 

 

Consequently, we screened a range of catalyst loadings in our asymmetric bromination 

reaction (Table 8) and pleasingly, by raising catalyst loading to 5 mol%, we were able to 

achieve a small increase in enantioselectivity, isolating bromolactone 115 in 17% ee (entry 

5). Intriguingly, the results demonstrate a non-linear relationship between catalyst loading 

and enantioexcess; a result which implies that there are at least two factors affecting 

enantioselectivity in our system.  
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Table 8: Screening the effects of catalyst loading on IBAM (113) catalysis 

 

 
 

Entry 

Catalyst loading (X 

mol% based on 

substrate) 

Yield (%) enantioexcess (%) 

1 0.1 mol% 8% < 5% 

2 1 mol% 27% 11% 

3 2.5 mol% 56% 13% 

4a 2.5 mol% 45% 14% 

5 5 mol% 53% 17% 

6a 5 mol% 48% 16% 

7 10 mol% 27% 9% 

8 25 mol% 26% <5% 

9 50 mol% 41% <5% 

10a 50 mol% 43% <5% 

 
a – repeat reaction 

 

We have already proposed and validated the idea that there are at least two possible 

catalytic intermediates; one containing an I(III)-Br bond (120), which delivers bromine 

asymmetrically to the alkene substrate, and one containing an N-Br bond (119), which 

delivers bromine in a non-asymmetric manner (Scheme 96). It is postulated that the N-Br 

species 119 is initially formed when bromine is transferred from NBS to IBAM (113) and that 

this subsequently undergoes an oxidative insertion reaction with the iodine to form the 

hypervalent I(III)-Br species 120. The transfer of Br+ from one catalyst molecule to another 

would also proceed via a similar mechanism with the initial formation of N-Br species 119. 

The greater the concentration of IBAM (113), the greater the likelihood of a second molecule 

of IBAM (113) picking up Br+ from the asymmetric hypervalent species and re-forming the 

non-asymmetric N-Br species. We have already demonstrated that, in a stoichiometric 

system at least, the transfer of Br+ between catalyst molecules is extremely facile. When this 

re-capturing mechanism becomes dominant, it would be expected that the enantioexcess of 
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the product would decrease with increased catalyst loading due to a higher proportion of Br+ 

delivered to the substrate via the N-Br intermediate 119. This enantioselectivity peaks at a 

point where I(III)-Br to N-Br transfer is reduced, but before the catalyst loading is lowered to 

the point where the direct NBS bromination background reaction begins to compete with the 

asymmetric catalysis pathway.  
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Scheme 96: I(III)-Br and N-Br IBAM intermediates and interchange between them 
 

In order to test this hypothesis, we synthesized and screened the iodine-free analogue of 

IBAM (113), 1,3-di-(-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)benzene, or BAM (121, 

Scheme 97). 

 

 
Scheme 97: synthesis of BAM (121) 
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As would be expected if our theory was accurate, BAM (121) efficiently catalysed the low 

temperature asymmetric bromination of 114, but produced completely racemic bromolactone 

product (Scheme 98). 

 
Scheme 98: BAM (121)-catalysed bromolactonisation 

 

Thus, it is confirmed that there is a significant non-asymmetric bromination pathway 

competing with our asymmetric hypervalent iodine mediated bromination. It appears that the 

importance of this competition may be concentration dependent. 

 

 

3.5. Synthesis of IBAM (113) derivatives and analogues 

 

It was hypothesized that by modifying the catalyst structure, it may be possible to promote 

the asymmetric delivery of bromine via iodine over the non-enantioselective delivery via 

nitrogen. It was proposed that this could be achieved by placing an electron-withdrawing 

acyl group on one of the amidine nitrogens (239, Figure 63).  

 

 

Figure 63: bis-acylated IBAM 

 

This should decrease the nucleophilicity of the amidine moiety and thus reduce its capacity 

for nucleophilic attack on the catalyst-Br+ hypervalent intermediate 120. Additionally it is 

possible that acylation may promote the formation of a hypervalent bond to iodine due to its 

stabilization of the δ- placed on the nitrogen in the 4-electron, 3-centre bond (Figure 64). 
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Figure 64: molecular orbitals in 4-electron, 3-centre bond in hypervalent iodine 
 
However, such modifications raise the question of the role of a transferable proton in the 

apical moiety.  Although ultimately a proton is lost from the substrate to replace bromine in 

NBS and to form succinimide, the original exchange of bromine from NBS to a catalyst 

lacking an acidic proton would leave a cationic catalyst species (240) and a succinimide 

anion (88) (Scheme 99). It is possible that “Br+” transfer would not occur in these 

circumstances, leading to an inactive catalyst. If such bromine exchange successfully occurs 

in our system, rapid proton transfer from the carboxylic acid substrate to the succinimide 

anion (88) is certain to occur, leading to more stable species. However, with different 

substrates that do not contain acidic protons, it may be necessary to add an additional 

proton source to facilitate a successful catalytic cycle. 

 

 

 

Scheme 99: transferal of Br
+
 from NBS to acylated IBAM 

 

3.5.1. Test of concept; benzoylated IAM (241) and iso-amarine (169)  

 

As an initial investigation into the usefulness of such proposed modifications, we 

synthesized benzoylated iso-amarine (169) and IAM (241). The racemic benzoylated iso-

amarine (169) was formed as detailed earlier (c.f. Section 2.2.3.) and benzoylated IAM (241) 

was formed in an analogous manner via benzoylation of IAM (111) with benzoyl chloride 

(Scheme 100). 
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Scheme 100: benzoylation of IAM (111) 

 

Upon screening of the catalysts (Table 9), benzoylated IAM (241) demonstrated no 

observable loss of activity relative to the unbenzoylated catalyst, IAM (111), whilst 

benzoylated iso-amarine (169) showed a considerable decrease in activity compared to its 

unbenzoylated analogue, iso-amarine (116). This suggests that bromine delivery via the 

amidine nitrogen is diminished with little or no negative effect on bromine delivery via iodine. 

 

Table 9: catalytic activity of benzoylated iso-amarine (169) and IAM (241) 

 

 

 

% conversion of substrate Catalyst 
15 min 50 min 3 h 

None present 
(control) ____ 30% 60% 

 

100% ____ ____ 

 

55% 100% ____ 

 

100% ____ ____ 

 

100% ____ ____ 
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Encouraged by these results, we embarked on the synthesis of a range of acylated IBAM 

(113) derivatives. 

 

3.5.2. Synthesis of acylated IBAM (113) derivatives 

 

We synthesised a range of acylated derivatives for screening as catalysts in our asymmetric 

bromination reaction (Scheme 101).  

 

 

Scheme 101: synthesis of acetylated and benzoylated IBAM derivatives 
 

Di-acetyl IBAM (244) and mono-acetyl IBAM (243) were synthesized by the addition of 2.5 

or 1.1 equivalents of acetic anhydride to IBAM (113) in the presence of triethylamine and 

catalytic DMAP. Di-benzoyl IBAM (242) was formed under similar conditions using 2.5 

equivalents of benzoyl chloride.  

 

We also attempted the acylation of both S- and R-IBAM (113S and 113R) with (R)-acetyl 

mandelic acid (173) to form the (S,S,R) and (R,R,R) diastereomeric pair of catalysts, 245 

and 246. 2,6-Di-[(4S,5S)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-dihydroimidazol-2-

yl]iodobenzene (245) was synthesised by the DCC mediated coupling of (R)-acetyl mandelic 

acid to S-IBAM (113S) (Scheme 102). 
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Scheme 102: synthesis of 2,6-di-[(4S,5S)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-
dihydroimidazol-2-yl]iodobenzene (245) 

 

X-ray crystallography of the product confirmed the structure and diastereomeric purity of the 

product 245.   

 

 
Figure 65: X-ray crystal structure of 2,6-di-[(4S,5S)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-

diphenyl-4,5-dihydroimidazol-2-yl]iodobenzene (245) 
 

It was apparent to us on viewing the crystal structure of 245 that it may be not be a good 

candidate for an asymmetric bromination catalyst. If the environment of the iodine atom is 

considered, it is apparent that four of the phenyl rings (with quarternary carbons C(27), 

C(15), C(27A) and C(15A)) sit in an almost symmetrical arrangement around the iodine. As 
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such, a bromine atom hypervalently bonded to the iodine would, rather than lying in an 

asymmetric pocket, experience relatively uniform steric interactions. Thus, an approaching 

alkene would not be expected to exhibit a preferential approach of one of its two prochiral 

faces and the catalyst would not be expected to deliver bromine with any significant 

enantioselectivity.  

 

We attempted to synthesise 2,6-di-[(4R,5R)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-

dihydroimidazol-2-yl]iodobenzene (246, Figure 66) via a similar method.  

 

 
 

Figure 66: 2,6-di-[(4R,5R)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-dihydroimidazol-2-
yl]iodobenzene (246) 

 

However, although the di-mandelyl derivative 246 was apparent in the crude reaction 

mixture, it proved extremely susceptible to decomposition on both silica and, to a lesser 

extent, on simply standing in solution. As a result of this instability, compounded by the 

solid’s distinct lack of crystallinity, all attempts to purify 246 yielded mixtures of the desired 

catalyst and apparent decomposition products.   

 

The mono-mandelyl IBAM derivative, 247, proved considerably more stable. Thus we were 

able to isolate 2-[(4R,5R)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-dihydroimidazol-

2-yl]-6-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]-iodobenzene (247, Scheme 103) 

from the reaction mixture via flash column chromatography.  

  

 
Scheme 103: synthesis of 2-[(4R,5R)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-

dihydroimidazol-2-yl]-6-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]-iodobenzene (247) 
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3.5.3. Synthesis of alkylated IBAM (113) derivatives 

 

We additionally desired to investigate the catalytic behaviour of certain alkylated IBAM (113) 

derivatives. The anticipated undiminished nucleophilicity of the amidine moiety, combined 

with the absence of a proton available to protonate the succinimide anion, made such 

derivatives interesting to us in respect to both activity and enantioselectivity. We chose to 

include a carbonyl group at different positions down the alkyl chains used to functionalise 

IBAM (113). It was proposed that the hypervalent iodine may be stabilised by the donation 

of lone pairs from the carbonyl oxygens, thus favouring the formation of a I(III)-Br catalytic 

intermediate. Such stabilising interactions have been observed in the crystal structure of the 

bromoiodinane 105, which demonstrated the presence of dimer pairs, linked by two I·····O 

interactions (Figure 67).64 

 
Figure 67: the linking pairs of I·····O interactions of adjacent centrosymmetrically related 

molecules into dimer pairs; the I·····O separation is c.a. 3.03 Ǻ 
 

We synthesised the di-alkyl derivative 249 via reaction of IBAM (113) with 2.2 equivalents of 

the corresponding α-bromoketone (248) in the presence of triethylamine (Scheme 104). 
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Scheme 104: synthesis of 2,6-Di-[(4R,5R)-1-(2-oxo-butan-1-yl)-4,5-diphenyl-4,5-

dihydroimidazol-2-yl]iodobenzene (249) 

 

It was noted that the reaction yielded a complex mixture of products, only one of which was 

the desired di-alkylated product 249. Two of the main components of the product mixture 

appeared to be unreacted and mono-alkylated IBAM. Thus, when we repeated the alkylation 

reaction, we added 4 equivalents of the 1-bromo-2-butanone (248) with the goal of driving 

the reaction to completion. However, rather than affording the desired di-alkylated product, 

249, the major component was now the tetra-alkylated derivative, 250 (Scheme 105), 

isolated from the reaction mixture in 29% yield. 

 

 

Scheme 105: formation of 2,6-Di-[(4R,5R)-1,3-di-(2-oxo-butan-1-yl)-4,5-diphenyl-4,5-
dihydroimidazolium-2-yl]iodobenzene dibromide (250) 

 

It can be concluded that, unlike the di-N-acylated IBAM derivatives (242, 244 and 245), the 

reactivity of the di-N-alkylated IBAM 249 is of comparable or greater reactivity than the 

unalkylated IBAM (113) starting material. Presumably this difference in reactivity originates 

in the mesomeric electron withdrawing effect of the acyl groups on the amidine moieties 

(thus reducing their capacity to act as nucleophiles) compared to the inductively electron 

donating alkyl groups. Thus, the alkylation reaction proceeds to yield a range of mono-, di-, 

tri- and tetra-substituted products on addition of 2.2 equivalents of α-bromoketone 248 to 

IBAM (113). This is in contrast to the analogous acylation where the reaction halts at, and 

thus can be driven to, the di-acylated product. However, whilst poor yielding, the reaction 

afforded us adequate di-alkylated IBAM 249 for our screening purposes. 
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Finally, the IBAM derivative, 252 (Scheme 106), was synthesised by heating IBAM (113) in 

dioxane with 1-buten-one (251) and sodium acetate.  

 

 

Scheme 106: synthesis of 2,6-di-[(4R,5R)-1-(3-oxo-butan-1-yl)-4,5-diphenyl-4,5-
dihydroimidazol-2-yl]iodobenzene (252) 

 

In this case, the reaction progressed no further than the di-alkylated product, 252, 

presumably due to the reversible nature of the attack of the second amidine nitrogen on the 

1,3-unsaturated ketone (Scheme 107).  

 

Scheme 107: reversible second alkylation of the amidine moiety 

 

3.5.4. Synthesis of a bis-oxazoline analogue of IBAM 

 

It was proposed that a bis-oxazoline analogue of IBAM (253, Figure 68) would be an 

attractive candidate for screening as an asymmetric electrophilic bromination catalyst. It was 

argued that the decreased nucleophilicity of the amide moiety compared to the amidine 

moiety, along with the positively charged intermediate that is necessarily formed on 

bromination, may again favour the hypervalent iodine route for bromine delivery over the 

delivery of bromine via one of the heteroatoms. 
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Figure 68: bis-oxazoline analogue of IBAM (253) 
 

However, the identity of the bis-oxazoline analogue was somewhat limited by the chiral 

aminoalcohols that were available to us. As previously reported (section 3.1.3.), attempts to 

form a bis-oxazoline 208 from the bis-aldehyde 199 utilizing (1R,2S)-2-amino-1,2-

diphenylethanol as our chiral aminoalcohol to form the oxazoline moiety were unsuccessful. 

Thus, we turned our attention to alternative methods of oxazoline formation and successfully 

synthesised bis-oxazoline catalyst 257, using (S)-phenyl alaninol 254 to form the chiral 

oxazolines. Diacyl chloride 187 was coupled to (S)-phenyl alaninol 254 to form the bis-

amide 255 (Scheme 108). The alcohol moiety of amide 255 was converted to a good leaving 

group by formation of the mesylate with mesyl chloride. Ring closure was then achieved by 

deprotonation of the bis-amide 256 with sodium hydroxide and its subsequent nucleophilic 

substitution of the mesylate group to yield the oxazoline product, 257. 

 

 

 

Scheme 108: synthesis of 2,6-di[(4’R)-4’-benzyloxazolin-2’-yl]iodobenzene (257) 
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3.5.5. Screening of the IBAM (113) derivatives/analogues 

 

Following the synthesis of a range of IBAM (113) analogues and derivatives, we conducted 

a screen of their capacity to act as asymmetric bromination catalysts (Table 10). Our 

previously tested substrates, 2-cyclopenten-1-ylacetic acid (114) and (S)- and (R)-2-

allyloxypropionic acid (217R and 217S) were utilized for our screening purposes.  

 

 
 

Figure 69: catalytic asymmetric bromolactonisation substrates 
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Table 10: screening of IBAM (113) analogues and derivatives 
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1 

244 (5 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 34% <5% ee 

2 244 (5 mol%) 217S CH2Cl2 0.25 M -78 ºC 24 h 9% 17% de 

3 244 (5 mol%) 217R CH2Cl2 0.25 M -78 ºC 24  h - 28% de 

4 

243 (1 mol%) 

114 CH2Cl2 0.025 M -78 ºC 8 h 37% <5% ee 

5 

242 (1 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 9% 7% ee 

6 242 (1 mol%) 114 acetone 0.25 M -78 ºC 8 h 22% <5% ee 

7 

245 (1 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 14% <5% ee 

8 245 (5 mol%) 114 CH2Cl2 0.25 M -78 ºC 8 h 34% 5% ee 

9 

247 (1 mol%) 

114 CH2Cl2 0.025 M -78 ºC 8 h 19% <5% ee 
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10 
N

NN

N
Ph

Ph

Ph

Ph

I

O O

249 (1 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 61% <5% ee 

11 249 (5 mol%) 217S CH2Cl2 0.25 M -78 ºC 8 h 9% 35% de 

12 249 (5 mol%) 217R CH2Cl2 0.25 M -78 ºC 8 h 9% 42% de 

13 

250 (1 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 48% <5% ee 

14 

252 (1 mol%) 

114 CH2Cl2 0.025 M -78 ºC 8 h 49% <5% ee 

15 

257 (1 mol%) 

114 CH2Cl2 0.25 M -78 ºC 8 h 3% <5% ee 

16 257 (1 mol%) 114 CH2Cl2 0.25 M 
-78 ºC 

to RT 
8 h 28% <5% ee 

17 257 (1 mol%) 114 CHCl3 0.25 M -45 ºC 8 h 10% 11% ee 

 

 

It is evident from our results that reducing the nucleophilicity of the groups ortho to iodine, 

via either acylation (entries 1-9) or substitution of an oxazoline moiety for the amidine 

(entries 15-17), results in a considerably diminished catalytic activity (for example, bis-

oxazoline 257 compared to IBAM (113) catalysis under identical conditions affords 3% of 
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bromolactone 115 compared to 55%). Mono-acylation (entries 4 and 9) results in a similar 

reduction in rate, but to a lesser extent than di-acylation.  

 

The alkylated IBAM derivatives (249 and 252, entries 10-12 and 14) on the other hand 

demonstrated no such loss of activity, both producing similar or greater yields of lactone 115 

to those obtained with IBAM (113) under analogous conditions. Thus, it would seem that 

catalyst activity, at least in a system acting on a carboxylic acid substrate, is unaffected by 

the absence of an acidic proton on the amidine. Catalytic activity is, however, closely linked 

to the nucleophilicity of the groups ortho to the iodine.  

 

There is also evidence of a steric effect on rate; as the size of the N-acyl or N-alkyl group 

increases, the rate of the catalytic bromination slows (c.f. mono-acetate 243, entry 4, 

compared to mono-mandelate 247, entry 9).  

 

A suprising result was the observed high catalytic activity of the tetrasubstituted IBAM 250 

(entry 13). This species has no lone pairs available on the amidine moieties for the attack on 

the electrophilic bromine of NBS and the subsequent formation of a N-Br or N-I(III)-Br bond. 

Thus, in this case, the catalysis is most probably occurring via attack of the bromine counter 

ion on NBS to form molecular bromine. This will then go on to rapidly brominate the alkene 

substrate to form the bromonium ion intermediate and regenerate bromide. 

 

However, despite the wide range of catalysts screened, encompassing various strategies to 

stabilise the I(III)-Br over the N-Br intermediate, we failed to identify a candidate which 

facilitated an increase in the enantioselectivity of the reaction.    

 

3.5.6. Stoichiometric additions of NBS to N-functionalised catalysts 

 

Finally a number of stoichiometric addiitions of NBS to the N-functionalised catalysts were 

undertaken and the conversion of NBS to succinimide was monitored (Table 11). 
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Table 11: stoichiometric additions of NBS to N-functionalised catalysts
a
 

 

 

Entry Catalyst Time 
Conversion of NBS 

to Succinimide 

1 

 

15 min 100% 

2 

 

15 min 100% 

3 

 

15 min <1% 

4 

 

15 min <1% 

5 

 

1 h 15 min 10% 

6 

 

2 h <1% 

7 

 

15 min 100% 

8 

 

1 h 20 min 82% 
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Entry Catalyst Time 
Conversion of NBS 

to Succinimide 

9 

 

1 h 20 min 21% 

10 

 

1 h 15 min 28% 

11 

 

1 h 15 min 9% 

 

a – all reactions conducted in deuterated chloroform stored over potassium carbonate and monitored 

by 1H NMR analysis 

 

Other than generally broadened resonances, no significant changes were initially observed 

in the NMR of the catalyst species. Extended stirring with NBS (20 h) resulted in the 

decomposition of the N-functionalised IBAM catalysts (243, 244, 249 and 252). The results 

of the stoichiometric additions demonstrated a marked difference between catalysts with an 

acidic proton (entries 1, 2, 7 and 8) and those without (entries 3, 4, 9-11). Although this 

difference was initially ascribed to the lack of an available proton to protonate the 

succinimide anion, addition of one equivalent of acetic acid did not facilitate improved 

turnover of NBS to succinimide. Therefore, the failure to form a significant amount of 

catalyst-Br+ complex must be ascribed to the inability of the brominated catalyst to lose a 

proton and thus form a neutral species.  

 

3.5.7. Conclusion 

 

A large scale preparation of our catalyst, IBAM (113, Figure 70), has been achieved, 

requiring the re-designing of the existing synthesis.  
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Figure 70: 2,6-di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene or IBAM 

 

This represented a significant advancement in the asymmetric catalytic bromination studies, 

moving from catalyst preparation via iterative 200 mg syntheses to a single large scale 

preparation producing enough catalyst to facilitate three years of research. The removal of 

such synthetic limitations facilitated the screening of a range of catalytic asymmetric 

bromination reaction conditions and the stoichiometric addition of NBS to the catalyst in an 

attempt to elucidate the nature of the catalytic intermediate. By optimization of the 

concentration and catalyst loading, the enantioselectivity of the catalytic bromolactonisation 

of 114 was increased to produce bromolactone 115 in 17% ee. 

 

 

Scheme 109: asymmetric bromolactonisation of 114 
 

The competitive formation of an N-Br catalytic intermediate has been identified as a 

significant factor leading to a depreciation of the enantioselectivity of the reaction. A range of 

N-substituted IBAM derivatives were synthesised and screened as asymmetric bromination 

catalysts with a view to inhibiting this pathway. Although a number of new insights have 

been gained into the catalytic mechanism, disappointingly, no significant increase in the 

asymmetric induction of the reaction was observed. 
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4. Bromonium Ion - Alkene Br+ Exchange 

 

Our results in the field of electrophilic asymmetric bromination made it evident to us that 

there was still a key factor that we had overlooked with respect to rendering the reaction 

enantioselective. After consideration of the existing bromination literature (c.f. section 1.2.), 

in conjunction with our own findings, it became apparent to us that bromonium ion-alkene 

Br+ exchange may be facilitating the partial or complete racemisation of any 

enantioselectively formed bromonium ion (Scheme 110).  

 

 

  

Scheme 110: racemisation of enantioenriched bromonium ion via bromonium ion-alkene Br
+
 

exchange 
 

Thus, we were posed with three questions that required answering: 

 

(1) Is bromonium ion – alkene Br+ exchange occurring in our system? 

(2) Does this exchange occur in a non-stereoselective manner, thus resulting in 

racemisation of an enantioenriched system? 

(3) Can such exchange be inhibited in order to improve the enantioexcesses produced 

in our reaction? 

 

 

4.1. Is bromonium ion – alkene Br+ exchange occurring in our system? 

 

In order to determine whether or not such exchange was occurring in our system, an 

experiment was conducted similar to that originally undertaken by Rodeburgh and Fraser-

Reid in their work on the bromination of ω-alkenyl glycosides (c.f. section 1.2.2.).51 Two 
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alkenoic acids, 114 and 61b, were selected which reacted with NBS form the corresponding 

bromolactones, 115 and 106, at similar rates (Tables 11 and 12).  

 
Table 12: bromolactonisation of 2-cyclopenten-1-ylacetic acid (114) with NBS 

 

 

 

Time (t) 1.5 h 4.5 h 22 h 49 h 

Conversion Trace 11% 62% 100% 

 

Table 13: bromolactonisation of 4-pentenoic acid (61b) with NBS 

 

 

 

Time (t) 1.5 h 4.5 h 22 h 49 h 

Conversion 7% 16% 65% 87%a  

a – full consumption of NBS observed 

 

The two alkenoic acids, 61b and 114, were then made to compete for insufficient NBS 

(Scheme 111). 

 

 
Scheme 111: competition of alkenoic acids, 61b and 114, for insufficient NBS 

 

If the formation of a bromonium ion was irreversible, then bromonium ion formation is the 

rate determining step and the product distribution should reflect the relative rates of the 

individual bromination reactions of 61b and 114. Thus, an approximately 1:1 ratio of the two 

bromolactones (106 and 115) would be predicted, with a small enhancement in 

bromolactone 106 due to a slightly faster rate of formation. However, on stirring one 
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equivalent of each substrate with one equivalent of NBS, a strikingly different product 

distribution was obtained than that predicted by assuming irreversible bromonium ion 

formation (Table 14).  

 

Table 14: competition of alkenoic acids, 61b and 114, for insufficient NBS 
 

Time (t) 1.5 h 4.5 h 22 h 49 h 

Conversion of 

61b to 106 
- Trace 5% 10% 

Conversion of 

114 to 115 
Trace 6% 40% 76% 

Conversion of 

NBS to 

succinimide 

3% 15% 62% 100% 

 

Thus the final product ratio obtained is 86:14 in favour of 6-

bromohexahydrocyclopenta[b]furan-2-one (115).  

 

This surprising result indicates a reversible step occurring within the bromolactonisation 

process rather than an irreversible bromonium ion formation, rapidly followed by 

intramolecular attack and subsequent ring closure. As Rodeburgh and Fraser-Reid pointed 

out, the heats of formation of succinimide (90) and NBS (226) are -109.72 kcal mol-1 and 

-80.35 kcal mol-1 respectively (Scheme 112) and the pKa of succinimide is 9.62. These all 

imply that the succinimide anion (88) would pick up H+ from the carboxylic acid substrate 

more readily than it would remove Br+ from a cyclic bromonium ion.  

 

 

Scheme 112: heats of formation of NBS (226) and succinimide (90) 
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Thus, similarly to Rodeburgh’s and Fraser-Reid’s conclusions, the reversible reaction of an 

alkene with NBS can be ruled out in our system. Therefore, the transfer of Br+ between 

bromonium ions and alkenes is proposed as the source of reversibility.  

 

 

 
Scheme 113: Br

+
 exchange in the bromolactonisation of alkenoic acids 114 and 61b 

 

Our findings can be reasoned by proposing the relative rate constants of the bromination 

and cyclisation steps for each substrate (Scheme 113). The overall rates of the individual 

brominations will be a combination of k1/k3 and k2/k4, and we observe that k1/k3 ≥ k2/k4. 

However, when the effects of exchange are apparent in the observed product distribution, 

we begin to be able to discriminate between the relative rates of the individual steps as Br+ 

exchange becomes a competing process with the intramolecular cyclisation step. In this 

case, the bromolactone will dominate the product distribution which either (1) has a faster 

rate of cyclisation or (2) has an alkene precursor which more rapidly captures Br+ from a 

bromonium ion. As there is little electronic difference between the two alkenes, 114 and 

61b, (2) seems unlikely. However, (1) seems a convincing argument as bromonium ion 260 

has some degree of pre-organisation for intramolecular attack and thus a smaller entropic 

barrier to cyclisation. Thus, we hypothesise that k4 > k3, resulting in a product distribution 

enhanced in 115.  

 

It is also worth noting, by comparison of the rates of reaction in tables 12, 13 and 14, that 

the addition of excess alkene results in an overall reduction in the rate of bromination. Such 
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an observation is in agreement with Brown’s observation that added Ad=Ad (39) suppressed 

the rate of his 39Br+/TfO- -promoted bromolactonisation reactions.48 This rate suppression 

can be reasoned by invoking two competing pathways for the reaction of bromonium ions; 

ring closure to form bromolactone product, or the transfer of Br+ to form further bromonium 

ion and alkene. As the amount of alkene increases, the number of unproductive Br+ 

transfers increases relative to the amount of bromolactone formation and thus the overall 

rate is reduced.  

 

The same competition reaction was repeated in the presence of 1 mol% IBAM (113) catalyst 

at both room temperature and -78 ºC (Table 15).  

 

Table 15: competition of alkenoic acids, 61b and 114, for insufficient NBS in the presence of 
IBAM (113) 

 

 

 

Entry Temperature 
Catalyst 

loading 
Solvent Timea 

Final product 

ratio, 

115:106 

1 RT _ CDCl3 49 h 86:14 

2 RT 1 mol% CDCl3 1 h 84:16 

3 -78 ºC 1 mol% CH2Cl2 - 94:6 

 
a – time until NMR analysis demonstrated full conversion of NBS to succinimide. 

 

Whilst the addition of IBAM (113) to the room temperature bromolactonisation appreciably 

shortened the reaction time, the product ratio obtained was indistinguishable from the 

uncatalysed reaction (taking into account the error margins of 1H NMR). The low 

temperature reaction resulted in a product ratio which was still more distorted in favour of 

bromolactone 115, presumably due to an increased discrimination between reaction 

pathways at reduced temperatures. Thus, it was concluded that under our catalytic 

asymmetric bromination conditions Br+ exchange between bromonium ions and alkenes is 

occurring and is an important factor requiring further consideration. 
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4.2. Does bromonium ion – alkene Br+ exchange result in loss of enantioexcess?  

 

In order to determine whether bromonium ion – alkene Br+ exchange leads to the 

racemisation of chiral bromonium ions, it is necessary to generate an enantiopure, or 

enantioenriched, chiral bromonium ion in the absence of any alkene. If this bromonium ion 

can be trapped by a nucleophile it should, in theory, produce enantiopure or enriched 

product. By the addition of alkene to this system its impact on the enantioexcess of the 

product obtained could then be determined (Scheme 114). The generation and study of 

such a system would facilitate valuable, unprecedented insights into the stereoselectivity of 

bromonium ion – alkene exchange and the stereochemical consequences of this in the 

asymmetric electrophilic bromination of alkenes.  

 

 
Scheme 114: determination of the stereochemical consequences of bromonium ion – alkene 

exchange 
 

4.2.1. Rearrangement of 2-bromo-2-phenylethanol (261) 

 

Previous work within the Braddock group121 had, when attempting the synthesis of 1-bromo-

2-chloro-1-phenylethane (263), revealed the rearrangement of 2-bromo-2-phenylethanol 

(261) on reaction with thionyl chloride to give 2-bromo-1-chloro-1-phenylethane (262, 

Scheme 115).  

 
Scheme 115: rearrangement of 2-bromo-2-phenylethanol (261) on treatment with thionyl 

chloride 

 

The regiochemistry of the rearranged product was confirmed by X-ray crystallography 

(Figure 71). 



 151

 
 

Figure 71: X-ray crystal structure of 2-bromo-1-chloro-1-phenylethane (262)
121

 

 

The rearrangement of 2-bromo-2-phenylethanol (261) to afford 2-bromo-1-chloro-1-

phenylethane (262) must necessarily proceed via a chiral bromonium ion intermediate, 265 

(Scheme 116). 

 

Scheme 116: rearrangement of 2-bromo-2-phenylethanol (261) on treatment with thionyl 
chloride 

 

Thus, in theory, synthesis of enantiopure bromohydrin 261 should facilitate the generation of 

enantiopure bromonium ion 265 in the absence of any alkene.  

 

This styrene-based substrate appeared to be suitable for our purposes not only due to the 

precedented rearrangement, but also due to its UV activity, thus facilitating measurement of 

the enantioexcess of the bromochlorinated product by a chiral HLPC method. Additionally, 

the enantiopure styrene oxide (267) can be purchased commercially and ring opening of the 

epoxide with hydrobromic acid should afford the desired enantiopure bromohydrin.  

 

Our investigations were commenced with the epoxidation and subsequent ring opening of 

styrene (266) to produce the racemic bromohydrin 261 (Scheme 117). 

 
Scheme 117: synthesis of racemic 2-bromo-2-phenylethanol (261) 
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However, on reaction of bromohydrin 261 with thionyl chloride under the conditions 

previously reported to facilitate the rearrangement, the expected bromochlorinated product 

262 was not observed. Instead, a product was isolated which appeared by 1H and 13C NMR 

as a complex diastereomeric mixture, suggesting dimerisation of the bromohydrin 261. The 

identity of the product was eventually confirmed by X-ray crystallography as di(2-bromo-2-

phenyleth-1-yl) sulfite (268, Figure 72). 

 

 

Scheme 118: formation of di(2-bromo-2-phenyleth-1-yl) sulfite (268) 

 

 

 
 

Figure 72: X-ray crystal structure of di(2-bromo-2-phenyleth-1-yl) sulfite (268) 

 

It was hypothesised that a greater concentration of thionyl chloride and hydrochloric acid 

would disfavour dimer formation and promote rearrangement to the bromochloride. Indeed, 

after investigating a range of different reaction conditions (including addition of pyridine or 

TMSCl), we found that full conversion to 2-bromo-1-chloro-1-phenylethane (262) could be 

achieved by refluxing in excess neat thionyl chloride for five hours (Scheme 119). 

Importantly, this reaction proceeded more rapidly and cleanly if the reaction mixture was 

open to air rather than under an inert atmosphere if nitrogen. In the presence air thionyl 

chloride slowly reacts with atmospheric moisture to liberate sulphur dioxide and two 

equilalents of hydrochloric acid. Thus the improved conversion of the reaction when open to 
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air indicates the importance of a high concentration of hydrochloric acid in the reaction 

mixture for the collapse of the sulfite intermediate (264 or 268) to form the product. 

 

 

Scheme 119: optimised conditions for the rearrangement of 2-bromo-2-phenylethanol (261) 
 

After optimising our rearrangement conditions, we turned our attention to the synthesis and 

rearrangement of the enantiopure bromohydrin 261. (S)-Styrene oxide (267S) was opened 

with hydrobromic acid to afford bromohydrin 261 (Scheme 120).  

 

 

Scheme 120: opening of (S)-styrene oxide (267S) with hydrobromic acid 

 

In order to determine the enantiopurity of the above bromohydrin product (261) the Mosher’s 

esters (270, Scheme 121) of the bromohydrin (261) were formed from both the racemic and 

enantiopure styrene oxide (267). The resulting 1H NMR of the ester derived from the 

racemic bromohydrin 261 demonstrated separation of the diastereomeric methoxy protons 

(3.46/3.42 ppm, Figure 73). By comparing the 1H NMR of the Mosher’s ester of the racemic 

bromohydrin, 261, to the 1H NMR  of the ester formed starting from enantiopure epoxide, 

267S, it was observed that partial racemisation of the benzylic position had occurred over 

the course of the ring opening, affording bromohydrin 261 in only 16% ee. 

 

 
 

Scheme 121: formation of Mosher’s ester 279 for racemic and enantioenriched bromohydrin 
261 
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Figure 73: aliphatic portion of 

1
H NMR spectra of Mosher’s ester of racemic bromohydrin 261 

 

 
Figure 74: aliphatic portion of 

1
H NMR spectra of Mosher’s ester of bromohydrin 261 

synthesised from (S)-styrene oxide 
 

Presumably this loss of enantiopurity is a consequence of the participation of a benzylic 

carbocation (Scheme 122) in the acid-promoted opening of the epoxide 267, resulting non-

faceselective trapping of the protonated intermediate. 
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Scheme 122: participation of benzylic carbocation in ring opening of styrene oxide (267) 

 

Presumably similar complications would also effect the rearrangement of the bromohydrin 

(261) proceeding via the bromonium ion intermediate (265). As such, it is likely the 

rearrangement would result in the formation of almost completely racemic bromochloride 

product (262), even without the addition of any alkene. The rearrangement was attempted 

on the enantioenriched bromohydrin 261 and the isolated bromochloride product (262) 

exhibited an optical rotation of zero, supporting our conclusion that bromohydrin 261 was 

not a viable substrate. Thus, it was decided that the substrate required re-designing to 

ensure we could measure the stereochemical consequences of exchange without the 

interference of additional factors. 

 

4.2.2. Rearrangement of 1-bromo-1-phenylpropan-2-ol (271) 

 

A trans-β-methylstyrene (18)-based system (Scheme 123) was proposed as a suitably 

modified substrate for our rearrangement and subsequent Br+ exchange studies.  

 

 

Scheme 123: rearrangement of 1-bromo-1-phenylpropan-2-ol (271) 

 

Changing from a styrene (266)-based system to a trans-β-methylstyrene (18)-based system 

had a number of advantages, the most important of which being the introduction of a second 

chiral centre at C-2. Independently of the mechanism of either the epoxide opening or the 
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bromonium ion mediated rearrangement, this second stereocenter should remain 

enantiopure, thus eliminating the possibility of racemisation via a benzylic carbocation. 

Additionally, the degree of benzylic β-bromocarbonium ion versus bromonium ion character 

of the intermediate in the rearrangement can be easily determined via 1H NMR by 

measuring the R*,S*(anti):S*,S*(syn) product ratio. Meanwhile, the UV activity of the 

substrate is retained, facilitating chiral HPLC analysis of the bromochlorinated product, 

274/275. 

 

Therefore, racemic 1-bromo-1-phenylpropan-2-ol (271/277) was synthesised by the same 

strategy applied to 2-bromo-2-phenylethanol (261) (Scheme 124). 

 

 
 

Scheme 124: synthesis of 1-bromo-1-phenylpropan-2-ol (271/277) 
 

Table 16: variation of diastereomeric ratio with temperature 
 

Entry Temperature (ºC) dr (R*,S*)(anti):(S*,S*)(syn) 

1 RT 68:32 

2 0 72:28 

3 -10 75:25 

 

It was found that, whilst the (R*,S*)(anti)271:(S*,S*)(syn)277 ratio could be increased slightly 

by lowering the temperature of the reaction (Table 16), the minor diastereomer could not be 

completely eliminated from the product mixture. However, we proceeded with the synthesis 

of bromohydrin 271/277 from enantiopure (1S,2S)-1-phenylpropylene oxide (276S, Scheme 

125). On formation of the Mosher’s ester and comparison with the Mosher’s ester of the 

racemic mixture, we were pleased to observe the presence of only two epimers in the 1H 

NMR (compared to four in the racemate, all four methoxy peaks appearing with baseline 

separation; Figure 75, 3.68/3.62/3.36/3.28). Thus, as predicted, the second chiral centre 

retains its stereochemistry in the epoxide opening.  
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Scheme 125: synthesis of (2S)-1-bromo-1-phenylpropan-2-ol (271/277) and subsequent 
Mosher’s ester formation 

 

 
Figure 75: portion of 

1
H NMR spectra of Mosher’s ester of (±)-1-bromo-1-phenylpropan-2-ol 

 

 
Figure 76: portion of 

1
H NMR spectra of Mosher’s ester of (2S)-1-bromo-1-phenylpropan-2-ol 
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The (R*,S*)- and (S*,S*)- diastereomers of 1-bromo-1-phenylpropan-2-ol (271/277) proved 

inseparable and thus it was decided to continue with the rearrangement using the 

diastereomeric mixture. The rearrangement of bromohydrin 271/277 proceeded well under 

our previously developed conditions and with little further decrease in the (R*,S*):(S*,S*) 

ratio (Scheme 126). The structure of the major diastereomer was confirmed by X-ray 

crystallography (Figure 77). 

 

 

Scheme 126: thionyl chloride mediated rearrangement of (±)-1-bromo-1-phenylpropan-2-ol 
(271/277) 

 

 
 

Figure 77: X-ray crystal structure of (1S*,2R*)-2-bromo-1-chloro-1-phenylpropane (274) 
 

Chiral HPLC conditions were developed which facilitated some degree of separation of both 

the (S*,R*) and (R*,R*) diastereomers and the two enantiomers of the (S*,R*) major 

diastereomer (Figure 78). Pleasingly, on submitting the enantiopure bromohydrin 271/277 to 

our rearrangement conditions, bromochloride 274/275 was obtained in 97% yield and with 

no apparent loss of enantiopurity (Figure 78).  
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Figure 78: HPLC traces of 2-bromo-1-chloro-1-phenylpropane (274/275) formed from racemic 
and enantiopure bromohydrin (271/277) 

 
 

Thus, not only had we achieved our goal of generating a chiral bromonium ion in the 

absence of alkene but also, to the best of our knowledge, we had succeeded in generating 

and trapping the first enantiopure or significantly enantio-enriched bromonium ion. We 

subsequently undertook the addition of alkene to our reaction mixture and measured the 

stereochemical consequences of this on the isolated product. However, to our surprise, the 

addition of one, or even five equivalents of trans-β-methylstyrene (18) or cyclohexene (44) 

resulted in no observable racemisation of our isolated bromochlorinated product 274/275 

(Table 17). 
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Table 17: addition of alkene to rearrangement of (2S)-1-bromo-1-phenylpropan-2-ol (271/277) 

 

 

 

Entry Alkene 
Equivents  

(X eq.) 
Yield 

Degree of racemisation 

visible on HPLC trace 

1 
 

1 eq 82% None 

2 
 

5 eq 57% None 

3 
  

5 eq 56% None 

 

This indicated that either Br+ exchange is occurring in a stereospecific manner or, more 

likely, that no exchange is occurring at all in this system. In order to probe whether any 

exchange is occurring over the course of the reaction, we conducted the rearrangement of 

bromohydrin 271/277 in the presence of styrene (266) (Scheme 127). If any transfer of Br+ 

occurs from the intermediate bromonium ion (273) to styrene, 2-bromo-1-chloro-1-

phenylethane (262) should be formed; a species we had previously synthesised and 

characterised. On carrying out this experiment and analysing the crude product mixture by 
1H NMR, no 2-bromo-1-chloro-1-phenylethane (262) was observed, indicating the absence 

of any bromonium ion – alkene Br+ transfer.  

 

 

Scheme 127: addition of styrene to rearrangement of (2S)-1-bromo-1-phenylpropan-2-ol 

 

At this point we paused to consider factors which may affect the extent of bromonium ion – 

alkene Br+ exchange in solution. We identified a number of variables which may exert an 

influence: 
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(1) Solvent 

Brown’s investigations into exchange within the adamantaneadamantylidene system (c.f. 

section 1.2.1.) had for the main part been conducted as dilute solutions in chlorinated 

solvents;38,39,48 conditions which are far removed from the neat thionyl chloride in which our 

rearrangement was conducted. It is highly possible that a more polar, coordinating solvent 

such as thionyl chloride, with a high concentration of the chloride nucleophile, may 

significantly inhibit bromonium ion – alkene Br+ exchange. 

 

(2) Concentration 

 It is plausible that the concentration of the reaction mixture should influence the extent of 

exchange, the higher the concentration, the greater the likelihood of the bimolecular collision 

between a bromonium ion and alkene necessary for the transferral of Br+. 

 

(3) Temperature 

The majority of work published in the field of Br+ exchange has been conducted at room 

temperature or lower;38,39,48,51 considerably milder conditions than our reaction conducted at 

65 ºC. It is possible that raising the temperature of the reaction decreases the lifetime of the 

bromonium ion and thus decreases exchange. 

 

(4) Nucleophile and leaving group 

The nature of the group expelled by bromine in the first step of the rearrangement and the 

nucleophile used to open to the bromonium ion may affect the degree of Br+ exchange 

observed. For example, it is reasonable to hypothesise that a powerful, anionic nucleophile, 

which both associates strongly to the bromonium ion and rapidly attacks the electrophilic 

carbons, will reduce the Br+ transfer due competitive trapping of the bromonium ion. 

 

(5) The “donor” bromohydrin and “acceptor” alkene 

The electronic and steric properties of both the bromonium ion donating Br+ (“donor” 

bromohydrin) and the scavenger olefin added to the reaction (“acceptor” alkene) may also 

influence the extent of Br+ exchange. For example, Brown and Bellucci reported results 

which suggested that the reversibility of bromonium ion formation in stilbenes was 

dependent on the bromonium ion versus β-bromo carbonium ion character of the 

bromination intermediate (c.f. section 1.2.2.).53 
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It was possible that any of these factors could be preventing exchange within our system 

and thus each required investigation.  

 

4.2.3. Effects of solvent and temperature on bromonium ion – alkene Br+ exchange 

 

We initially decided to consider the impact of solvent and temperature on the degree of 

bromonium ion – alkene Br+ exchange observed. We desired to bring our rearrangement 

conditions into closer agreement with both those reported in the existing work published on 

Br+ exchange and with the conditions of our catalytic asymmetric bromination. Thus, 

substrates and reagents were investigated which would allow us to conduct our 

rearrangement at lower temperatures and in chlorinated solvents. It was envisaged that 

more variation could easily be introduced to the system by the functionalisation of the 

bromohydrin 271/277 to convert the alcohol into a good leaving group. If this intermediate 

could be isolated, it could be submitted to a range of rearrangement conditions with the 

addition of a nucleophile of our choice to open the bromonium ion.  

 

After revisiting Brown’s work on exchange, bromotriflate 279 was selected as a possible 

substrate, Brown having used a similar substrate, 66, to generate bromonium ions in situ in 

exchange experiments.50   

 

Figure 79: bromotriflate substrates 

 

It was proposed that, by the use of a more labile leaving group than that generated on 

reaction of the bromohydrin with thionyl chloride, the rearrangement could be conducted at 

lower temperatures. The bromotriflate 279 was, as predicted, extremely susceptible to 

rearrangement to the bromonium ion, indeed the triflate leaving group of 279 proved too 

labile for our purposes. Whilst Brown noted the instability of bromotriflate 66 at room 

temperature, the triflate could be formed by the reaction of triflic anhydride and (±)-trans-2-

bromocyclohexanol (287) with the temperature maintained between 0 and 5 ºC and the 

product subsequently stored as a solution at -78 ºC.122 Unfortunately attempts to form 

bromotriflate 279 from bromohydrin 271/277 resulted in no reaction until the temperature 

was raised to room temperature. At this temperature, as soon as triflation occurred the 
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leaving group was immediately expelled, resulting in a complex mixture of decomposition 

products (Scheme 128). The major components of this mixture were various epimeric 

ethers, 280 (characterized by NMR and GCMS), presumably formed via bromonium ion 

formation after triflation, followed by ring opening by unreacted starting material.  

 

 

Scheme 128: attempted formation of bromotriflate 279 
 

It would appear that the greater stability imparted to the bromonium ion of trans-β-

methylstyrene (273) by the adjacent phenyl ring reduces the activation energy of the 

rearrangement of bromotriflate 279 relative to that of 66 to the extent where 279 cannot be 

isolated. The instantaneous expulsion of the triflate on its formation was confirmed by 

following the triflation reaction via a variable temperature 1H NMR experiment. Whilst the 

formation of the ether dimer could be observed, at no point was any substantial amount of 

bromotriflate apparent. 

 

The bromotosylate, 281, was also investigated as a possible substrate for the 

rearrangement. However, under solvolysis conditions the tosylate leaving group proved 

insufficiently labile, bromotosylate 281 only undergoing reaction at high temperatures and 

affording a mixture of products under these conditions (Scheme 129).   

 

 
Scheme 129: formation and attempted rearrangement of (1’S)-2’-bromo-1’-methyl-2’-

phenylethyl p-toluenesulfonate (281) 

 

We therefore turned our attention to alternative methods of activating our alcohol leaving 

group in situ. It came to our attention that Mioskowski and co-workers had observed an 

analogous reaction of a bromohydrin to afford the rearranged bromochloride product in their 

racemic synthesis of halomon.123 The reagent used in this case was Viehe’s salt, 282, which 
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Mioskowski reported as facilitating the rearrangement in dichloromethane between 0 ºC and 

room temperature. Pleasingly, when Viehe’s salt (282) was used in our system, 

rearrangement was observed under similarly mild conditions (Scheme 130).  

 

Scheme 130: Viehe’s salt-mediated rearrangement of bromohydrin 271/277 
 

The development of chiral HPLC conditions had continued coincidentally with the 

investigations into rearrangement conditions. It was found that by changing to a reverse 

phase system, much improved separation of all four diastereomers and enantiomers of the 

racemate could be achieved (Figure 80).124  

 

 

Figure 80: chiral HPLC trace demonstrating separation of diastereomers and enantiomers of 
(±)-2-bromo-1-chloro-1-phenylpropane (274/275)  

 
 

Subsequent analysis under these conditions of the bromochloride product (274/275) from 

rearrangement of (2S)-1-bromo-1-phenylpropan-2-ol (271/277) with Viehe’s salt 

demonstrated an enantioexcess of 94% for the major (R*,S*)-diastereomer. 

 

On addition of two equivalents of styrene (266) to the Viehe’s salt mediated rearrangement 

of 271/277, a small amount of bromochlorinated styrene, 262, was observed in the crude 

reaction mixture (Scheme 131; N.B. the control reaction, stirring styrene with Viehe’s salt in 

deuterated chloroform, demonstrated no reaction after stirring at room temperature for four 
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days). The free olefin, trans-β-methylstyrene (18), was also evident in the crude 1H NMR of 

the reaction mixture, indicating the occurrence of Br+ exchange between the bromonium ion 

intermediate (273) and styrene (266, Scheme 132). 

 

 
Scheme 131: evidence of bromonium ion – alkene Br

+
 exchange 

 

 

 

 

Scheme 132: proposed mechanism of formation of bromochlorinated styrene, 262 

 

The rearrangement was also conducted in the presence of two equivalents of trans-β-

methylstyrene (18, Scheme 133). In this case, although the yield was slightly reduced, no 

significant racemisation of the product was observable by chiral HPLC analysis. 
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Scheme 133: addition trans-β-methylstyrene (18) to rearrangement of bromohydrin (271/277) 

 

However, this result is not particularly surprising if we assume a similar degree of exchange 

occurs between the bromonium ion intermediate 273 and trans-β-methylstyrene (18) as 

between the bromonium ion 273 and styrene (266) (a reasonable assumption based on past 

bromination rate studies).18 We will also assume that negligible transfer of Br+ from the 

bromonium ion of styrene (265) back to trans-β-methylstyrene (18) occurs in Scheme 132; 

again a well-founded assumption due to the extremely low concentration of free trans-β-

methylstyrene (18) in the system. In such a case, 7% of Br+ would be transferred from the 

bromonium ion intermediate (273) to trans-β-methylstyrene (18) olefin to form supposedly 

racemic bromonium ion, thus generating 3.5% of the (S,R) enantiomer of 2-bromo-1-chloro-

1-phenylpropane (274) after ring opening with chloride. This would result in an 

enantioexcess of 93% of the isolated (R*,S*)-2-bromo-1-chloro-1-phenylpropane (274), in 

keeping with our observed value.  

 

Thus, we had demonstrated the phenomenon of bromonium ion – alkene exchange in our 

system, although only to a very small degree. However, the limited Br+ exchange in our 

system was still at odds with the facile exchange reported in the literature and apparently 

occurring in our catalytic bromination reaction. Therefore, we considered further factors 

which may influence the extent of Br+ exchange. It was necessary to increase the degree of 

exchange taking place within our system to facilitate study of the stereochemical 

consequences of Br+ transfer. Additionally, it was also important to better understand the 

limiting factors to exchange in order to apply these to our asymmetric catalytic bromination 

reaction. 
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4.2.4. Effect of “donor” bromohydrin structure on bromonium ion – alkene Br+ exchange 

 

The first factor investigated was the impact of changing the structure of the “donor” 

bromonium ion, by modification of the bromohydrin starting material. It was hypothesized 

that partial benzylic carbocation character of the bromonium ion 273 (Figure 81) may result 

in the inhibition of Br+ exchange.  

 

Figure 81: partial benzylic carbocation character of bromonium ion intermediate 273 
 

A partially bridged bromonium ion, such as 285, places significant partial positive charge on 

the benzylic carbon, unlike a symmetrically bridged bromonium ion, which places the 

majority of the charge on the bromine. Thus, nucleophilic attack at bromine by an alkene is 

disfavoured and the likelihood of attack at the benzylic carbon by chloride is increased. It 

was therefore decided to investigate bromonium ion – alkene Br+ exchange under our 

rearrangement conditions from an aliphatic, symmetrical bromonium ion in order to 

determine if any increase in Br+ transfer was observed. (±)-Trans-2-bromocyclohexanol 

(287) was selected as an easily accessible aliphatic bromohydrin substrate and it was 

accordingly synthesised from cyclohexene oxide (286, Scheme 134).  

 

 

Scheme 134: synthesis of (±)-trans-2-bromocyclohexanol (287) 

 

On treatment of (±)-trans-2-bromocyclohexanol (287) with Viehe’s salt, the corresponding 

(±)-trans-1-chloro-2-bromocyclohexane (288) was obtained (Scheme 135).  
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Scheme 135: conversion of (±)-trans-2-bromocyclohexanol (287) to (±)-trans-1-chloro-2-
bromocyclohexane (288)  

 

Thus, we proceeded with our exchange investigations (Table 18) and found that, on the 

rearrangement of 287 in the presence of either trans-β-methylstyrene (18, entry 2) or 

styrene (266, entry 3), a significantly greater degree of bromochlorinated acceptor alkene 

(274/275 or 262) was observed in the crude product mixture compared to that obtained on 

the rearrangement of (2S)-1-bromo-1-phenylpropan-2-ol (271/277, entry 1).  

 

Table 18: relationship between structure of “donor” bromohydrin and degree of Br
+
 transfer 
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a - combined yield of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product, c - conversion 
 

Evidently, from these results, the degree of Br+ transfer is significantly influenced by the 

degree of bromonium ion/β-bromocarbonium ion character in the Br+ donor intermediate 

formed from rearrangement of the initial bromohydrin.  



 169

At this point, with two “donor” bromohydrin substrates available to us, we wished to confirm 

that the product distribution we were observing was kinetic rather than thermodynamic; that 

is, it is determined by the relative rates of exchange between bromonium ion and alkene and 

not by the relative stabilities of the two possible bromonium ions. Accordingly, two parallel 

reactions were conducted, each taking one equivalent of a donor bromonhydrin and 

rearranging it in the presence of one equivalent of the acceptor alkene of the other substrate 

(Table 19). 

 
Table 19: proof of kinetic product distribution 
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(1 eq.) 
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CDCl3 0.03M 38% 8% 

 
a - combined conversion of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product 
 

If the observed product distribution originated from thermodynamic factors, each parallel 

reaction should have yielded the same ratio of bromochlorinated products. The considerable 

difference between the two reaction products demonstrates that the exchange process in 

our system is determined by purely kinetic factors. 

 

4.2.5. Effect of “acceptor” alkene structure on bromonium ion – alkene Br+ exchange 

 

Having confirmed both a kinetic product distribution and the existence of a relationship 

between the rate of exchange and the structure of the “donor” bromohydrin, attention was 

turned to the effect of structurally modifying the “acceptor” olefin. A range of alkenes were 

screened with regards to their capacity of accepting Br+ from a bromonium ion (Table 20).  
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Table 20: relationship between structure of “acceptor” alkene and degree of Br
+
 transfer 
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49% 0% 

2 

 

 

  

47% 15% 

3 

 

 

  

49% 16% 

4 

    

83% 40% 

5 

    

53% 43% 

 
a - combined conversion of both “donor” and “acceptor” bromochlorinated products 

 b - % of bromochlorinated “acceptor” relative to total bromochlorinated product 
 

It is apparent that there is also a strong relationship between the nucleophilicity of the 

acceptor alkene (and thus the stability of the resulting bromonium ion) and the degree of Br+ 

transferred to it. Our results demonstrate a full spectrum of acceptor alkenes ranging from 

no detectable transfer of Br+ to 289 (entry 1), through to the capture of 43% of the Br+ by 

trans-anethole 21 (entry 5). Similarly to Rolston’s and Yates’ observations concerning the 



 171

relative rates of bromination of substituted styrene derivatives,18 aromatic substitution has a 

much greater effect on rate than methyl substitution of the β-carbon, indicating a significant 

degree of stabilisation of the positive charge over the α-carbon and the aromatic ring. 

 

4.2.6. Effects of concentration on bromonium ion – alkene Br+ exchange 

 

Attention was then turned to investigating the influence of the concentration of the reaction 

mixture on the degree of exchange observed (Table 21). 
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Table 21: effect of concentration on the degree of exchange observed 
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1 OH

Br

271/277

 

 

(2 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 42% 3% 

2 OH

Br

271/277

 

 

(2 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.25M 56% 7% 

3 OH

Br

271/277

 

 

(2 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 1.0M 78%  6% 

4 

OH

Br

(±)-287
 

 

(2 eq.) 
 

282 (1.1 eq.) 

CDCl3 0.03M 33%c 16% 

5 

OH

Br

(±)-287
 

 

(2 eq.) 
 

282 (1.1 eq.) 

CDCl3 0.25M 51%c 15% 

6 

OH

Br

(±)-287
 

 

(2 eq.) 
 

282 (1.1 eq.) 

CDCl3 1.0M 74%c 15% 

 
a - combined yield of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product, c - conversion 
 

The above results (Table 21) demonstrate a negligible effect of concentration on the degree 

of bromonium ion – alkene Br+ exchange from either of the bromohydrin substrates (271/277 

or 287). Although initially surprising to us, these results could be reasoned by considering 

the two competing pathways by which the intermediate bromonium ion 273 can react, that 
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is, by transfer of Br+ to an alkene molecule (266), or by attack and subsequent ring opening 

by chloride at the benzylic carbon (Scheme 136). 

 

 
Scheme 136: competing reaction pathways of the bromonium ion 

  

As both pathways involve bimolecular collisions, it is reasonable to propose that increasing 

the concentration increases both to an approximately equal extent. Therefore, no overall 

increase in exchange is observed on increasing the concentration of the reaction mixture.  

 

To our knowledge, the only comparable experiments which investigated the effects of 

concentration on the degree of bromonium ion – alkene Br+ exchange were undertaken by 

Rodebaugh and Fraser-Reid in their work on Br+ exchange in the bromination of ω-alkenyl 

glycosides (c.f. section 1.2.2.).51 Rodebaugh and Fraser-Reid reported that the degree of Br+ 

exchange observed in the system had a strong dependence on the concentration of the 

reaction mixture. However, in their experiments, the nucleophilic attack on the carbons of 

the bromonium ion was conducted by the solvent (water) which can be assumed to be at 

constant concentration. Thus, increasing the concentration of the reaction mixture would 

increase the concentration of alkene relative to the bromonium ion, but not the concentration 

of the nucleophile. Thus, at higher concentrations the rate of the exchange pathway would 

increase at the expense of the nucleophilic opening of the bromonium ion, leading to an 

overall increase in the degree of bromonium ion – alkene Br+ exchange observed.  

 

4.2.7. Effects of alkene equivalents on bromonium ion – alkene Br+ exchange 

 

The effect of the alkene equivalents added to the rearrangement reaction mixture on 

bromonium ion – alkene exchange was subsequently investigated (Table 22).  
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Table 22: effect of alkene equivalents on the degree of exchange observed 
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1 

 (1 eq.)  

282 (1.1 eq.) 

CDCl3 0.03M 27% 15% 

2 

 

266 (2 eq.) 
 

282 (1.1 eq.) 

CDCl3 0.03M 33% 16% 

3 

 

266 (10 eq.) 
 

282 (1.1 eq.) 

CDCl3 0.03M 38% 18% 

4 
 

18  
(1 eq.)  

282 (1.1 eq.) 

CH2Cl2 0.03M 36% 17% 

5 
 

18 (2 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 49% 16% 

6 
 

18 (5 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 25% 21% 

7 
 

 

21 (1 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 40% 43% 

8 
 

21 (2 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 53% 43% 

9 
 

21 (5 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 46% 44% 

10 
 

21 (10 eq.) 
 

282 (1.1 eq.) 

CH2Cl2 0.03M 8% 48% 

 
a - combined yield of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product 
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The anomalous yield obtained in entry 10 is due to a side reaction of Viehe’s salt (282) with 

the electron-rich alkene 21 to give an unidentified byproduct. At ten equivalents of alkene 

this reaction becomes significant and results in a reduced yield of the bromochlorinated 

products 288 and 293. Although small increases in exchange on increased concentration 

were generally observed for a particular alkene (entries 1-3, 4-6 and 7-10), the dependence 

of exchange on the equivalents of added alkene was also almost negligible. This result is 

surprising when compared to the high dependency of the rate of Br+ transfer on the nature of 

the “acceptor” alkene and is not easily rationalised. However, it is obvious that the number 

of productive collisions between bromonium ion and alkene is vastly more dependent on the 

nucleophilicity of the attacking alkene than its concentration. 

 

4.2.8. Nucleophilic catalysis of bromonium ion – alkene Br+ exchange 

 

Brown’s observation that bromide could facilitate Br+ exchange between bromonium ions 

and alkenes had previously been noted (section 1.2.2.)50. Brown proposed that this occurred 

via attack of the bromide at the bromine of the bromonium ion and the re-formation of 

bromine. Thus, it was deemed necessary to consider the possibility of other nucleophiles 

acting in the same capacity.  

 

Initially, consideration was given to the possibility of chloride attacking the bromide of the 

bromonium ion to form bromochloride, which could then go on to bromochlorinate the added 

acceptor alkene. However, adding 5.5 equivalents of Viehe’s salt rather than 1.1 (and thus 

increasing the chloride concentration in the reaction mixture five-fold) led to only a small 

increase in observed exchange (Table 23).  
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Table 23: effect of chloride concentration on the degree of exchange observed 

 

Entry “Donor” 
bromohydrin 

“Acceptor” 
alkene reagent solvent Conc. Yielda Exchangeb 

1 OH

Br

271/277

 

 

(2 eq.) 

 

282  
(1.1 eq.) 

CH2Cl2 0.03M 42% 3% 

2 OH

Br

271/277

 

 

(2 eq.) 

 

282 

 (5.5 eq.) 

CH2Cl2 0.03M 83% 6% 

 
a - combined yield of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product 
 

The above results demonstrate a small increase in 2-bromo-1-chloro-1-phenylethane (262) 

on increasing the chloride concentration. However, the increase is almost negligible and 

this, combined with the observation that no dibromide product was observed in the crude 

product (which would be expected, as a result of the BrCl/ Br2 + Cl2 equilibrium, if BrCl was 

present in the reaction mixture), allowed the nucleophilic attack of chloride on Br+ to be ruled 

out as a significant mechanism of exchange. 

 

We were also intrigued to determine whether our bromination catalysts could act as 

nucleophilic catalysts for the transfer of Br+ between alkenes and, consequently, whether or 

not transfer of Br+ from our catalyst to an alkene was reversible. Thus, a selection of 

exchange experiments were conducted with a catalytic amount of iso-amarine (116) and 

IBAM (113) added. 
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Table 24: effect of added bromination catalyst on the degree of exchange observed 

 

 

 

Entry Catalyst Conversiona Exchangeb 

1 control 53% 43% 

2 

 

69% 45% 

3 

 

59% 42% 

 
a - combined yield of both “donor” and “acceptor” bromochlorinated products 

b - % of bromochlorinated “acceptor” relative to total bromochlorinated product 
 

It is apparent that addition of either of the bromination catalysts, 116 or 113, did not increase 

the rate of Br+ exchange. Thus it can be concluded that, at least under these conditions, 

transfer of Br+ from a bromonium ion to alkene is considerably more facile than transfer of 

Br+ to our bromination catalysts. This indicates that in our catalytic system bromine transfer 

from catalyst to alkene may be irreversible, dispite bromonium ion to alkene bromine 

transfer being rapid. 

 

4.2.9. Modifications to the leaving group; Lepore’s arylsulfonate125 

 

Although it had been demonstrated that exchange was considerably increased by employing 

a fully aliphatic bromonium ion and a more electron-rich alkene acceptor, we were still not 

observing the rapid Br+ exchange that is occurring in our catalytic system. After considering 
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the earlier investigations into the variables of our system, it was hypothesized that the major 

limiting factor to exchange may be the nature of the rearrangement itself. While this is 

promising in terms of utilizing the rearrangement in asymmetric synthesis (the 

stereochemistry of the starting material being preserved in the product under the majority of 

conditions), this is undesirable for our purposes of studying bromonium ion – alkene Br+ 

exchange. 

 

It was proposed that two characteristics of the rearrangement may be resulting in a 

reduction in the observed Br+ exchange. Firstly, the nucleophilicity of the chloride is 

considerably greater than that of the nucleophiles (e.g. water, alcohol, carboxylic acid, 

sulfonate) that have been used to trap bromonium ions in reactions where exchange has 

been reported to be significant. Secondly, the mechanism of the rearrangement is likely to 

occur via a tight ion pair within a solvent sphere (Scheme 137): a chloride ion will be closely 

associated with the positively charged Vilsmeier-type leaving group (283) and thus will be in 

close proximity to rapidly trap the newly formed bromonium ion (273). 

 

 

Scheme 137: rearrangement and opening of the bromonium ion 273 within a solvent sphere 
 

Thus, attention was turned to the investigation of the effect of modifying the nature of both 

the leaving group and the nucleophile used to open the bromonium ion intermediate.  

 

Lepore’s work on the use of arylsulfonate leaving groups and their formation of alkyl 

chlorides on reaction with titanium tetrachloride125 (Scheme 138) was attractive to us for use 

within our system. Lepore et al formulated an aryl sulfonate-based nucleophile assisted 

leaving group containing a polyether unit attached to the aryl ring, ortho to the sulfonate. It 

was proposed that the polyether and sulfonate oxygens strongly chelated to the titanium 

(IV), thus stabilizing the developing negative charge on the leaving group in the transition 

state. Lepore et al reported greatly accelerated rates for the reaction of metal halides with 
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such modified arylsulfonate leaving groups. Furthermore, it was also reported that the 

reaction of secondary arylsulphonates such as 295 with titanium tetrachloride proceeded 

with exclusive retention of configuration via a proposed SNi-type mechanism. 

 

 

Scheme 138: representative example of SNi-type substitution of Lepore’s arylsulphonate 
leaving group

125 
 

It was envisaged that use of Lepore’s leaving group, with a chelating cation to facilitate its 

loss, could be an advantageous modification to our system for a number of reasons;  

 

(1) The product distribution allows the investigation of the rate of bromonium ion formation. 

Lepore reports the full conversion of arylsulphonate to the corresponding chloride in less 

than two minutes at -78 ºC. We were curious to determine whether, when using analogous 

conditions with our substrate, we obtained the SNi-type product, 298, or the rearranged 

bromochloride, 274. 

 

Scheme 139: possible outcomes for the reaction of arylsulphonate 297 with titanium 
tetrachloride 

 

(2) The use of the arylsulfonate leaving group allows us to switch from a positively charged 

activated bromohydrin intermediate 283 when using Viehe’s salt to a neutral reactive 

species 297. The neutral species should, in theory, be less closely associated with the 

nucleophile anion and should lead to slower trapping of the bromonium ion. This, in turn, 
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may result in increased exchange of Br+ from bromonium ion to alkene, facilitating our study 

of the phenomenon. 

(3) All previous concerns regarding the transfer of Br+ via attack of chloride to form BrCl are 

negated in this system; all chloride should be bound to the strongly lewis acidic titanium (IV), 

until released by coordination of a lone pair of the sulfonate oxygen to the titanium. 

(4) The option is introduced of varying both the counterion and the nucleophile by changing 

the salt added to promote the loss of the leaving group. Screening of such salts would be of 

interest with respect to both the SNi (298) versus rearranged (274) product distribution and 

to the degree of bromonium ion – alkene Br+ exchange. 

 

The aryl sulfonyl chloride precursor (300) to Lepore’s leaving group was accordingly 

synthesised and coupled to the chiral bromohydrin 271/277 (Scheme 140).  

 

 

Scheme 140: synthesis of chiral bromosulphonate 297 
 

The bromosulphonate 297 was then subjected to Lepore’s SNi substitution conditions with 

surprising results (Scheme 141). 

 

 

 
Scheme 141: reaction of bromosulphonate 297 under Lepore’s conditions for SNi substitution 
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The reaction of our substrate, 297, proceeded considerably more slowly than those reported 

by Lepore et al; TLC analysis demonstrating incomplete conversion of starting material after 

stirring at -78 ºC for 1.5 h. However, after allowing the reaction mixture to gradually warm to 

room temperature, full consumption of starting material was observed. After work up, the 

product mixture proved to consist entirely of the rearranged bromochloride 274/275, with no 

evidence of any product of an SNi-type substitution (298). Furthermore, HPLC analysis 

revealed bromochloride 274/275 to be completely enantiopure (>99% ee, Figure 83) 

 

 
Figure 82: chiral HPLC trace demonstrating separation of diastereomers and enantiomers of 

(±)-2-bromo-1-chloro-1-phenylpropane (274/275)  
 

 
Figure 83: chiral HPLC trace of (R)-2-bromo-1-chloro-1-phenylpropane (274/275) product from 

bromosulphonate 297 under Lepore’s conditions 
 

Thus, we have demonstrated an extremely facile, efficient and, above all, enantiospecific 

rearrangement via a chiral bromonium ion. This represents an unprecedented method for 

generating an enantiopure bromonium ion in a controlled fashion; a potentially powerful 

synthetic tool. 

 

As bromohydrin 271/277 represented a significant deviation from Lepore’s published results, 

it was decided to investigate how necessary the polyether chain was to the loss of the 

leaving group. Due to the neighbouring group assistance of the bromine, it was 

hypothesized that it may be possible to conduct the rearrangement via the reaction of a 
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simple arylsulphonate substrate with titanium tetrachloride. Accordingly, the bromotosylate 

281 was subjected to Lepore’s conditions and quantitative conversion of 281 to the 

rearranged bromochloride product was observed (Scheme 142). 

 

 

Scheme 142: reaction of bromotosylate 297 under Lepore’s conditions 
 

Although the product mixture demonstrated a few minor impurities (unlike the product of the 

reaction of the polyether functionalised leaving group), HPLC analysis demonstrated the 

bromochloride 274/275 to also be enantiopure. 

 

Attention was then turned to investigation of the effects on conducting the rearrangement in 

the presence of alkene. On the addition of two equivalents of trans-β-methylstyrene (18) to 

the reaction mixture (Scheme 143) bromochloride 274/275 was still obtained in >99% ee.  

 

 
 

Scheme 143: rearrangement in the presence of trans-β-methylstyrene (18) 

 

Subsequent rearrangement of the bromosulfonate 297 in the presence of two equivalents of 

styrene (266, Scheme 144) demonstrated the absence of any bromochlorinated styrene in 

the crude product mixture and thus confirmed that no Br+ exchange was occurring in the 

reaction mixture. 
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Scheme 144: rearrangement in the presence of styrene (266) 
 

It is proposed that under Lepore’s reaction conditions the delivery of chloride is equally or 

more rapid than in the rearrangement induced by Viehe’s salt. Thus, the bromonium ion is 

trapped to form the bromochloride product before any transfer of Br+ to an alkene can occur. 

 

 

4.3. Can Br+ exchange be inhibited in order to improve the enantioexcess produced in 

our catalytic bromination reaction?  

 

Finally, our findings from our study of exchange were applied back to our asymmetric 

catalytic electrophilic bromination reaction. On considering the final question posed at the 

start of chapter 4; “Can Br+ exchange be inhibited in order to improve the enantioexcess 

produced in our catalytic bromination reaction?”, it would appear that it can be answered in 

the affirmative. From earlier conclusions, it is proposed that a well considered choice of 

alkene substrate, nucleophile and solvent would facilitate a decrease in Br+ exchange and 

consequently a rise in the enantioselectivity of the reaction.  

 

A substrate should be selected which will, when brominated, exist as a weakly bridged 

bromonium ion or an open β-bromocarbonium ion. It has been established that increased β-

bromocarbonium ion character of a bromonium ion reduces its capacity to transfer Br+ to an 

alkene molecule and, thus, choice of such a substrate will reduce exchange. However, it is 

imperative that chirality is not exclusively introduced at the carbocation centre, due to the 

reduced stereocontrol of nucleophilic attack at this position compared to that of a 

symmetrical bromonium ion. As such, trans-β-methylstyrene (18) is an ideal substrate for 

asymmetric bromination, due to the introduction of chirality at both the α- and β- carbons. 

The bromonium ion intermediate (285) has significant benzylic carbocation character 
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(Scheme 145), resulting in some degree of stereochemical scrambling at the α-carbon. 

However, the stereochemistry is fully retained at the β-carbon. 

 

 
Scheme 145: proposed asymmetric bromination of trans-β-methylstyrene (18) 

 

It is also hypothesized that the use of a more potent nucleophile (X-) to open the bromonium 

ion than the previously employed carboxylic acid may reduce the bromonium ion’s lifetime 

and thus the degree of Br+ transfer observed.  

 

A reaction had previously been developed in the Braddock group which appeared to present 

us with the means to fulfil both of these criteria. Kwok had reported121 the efficient and 

regioselective bromochlorination of styrene using NBS, trimethylsilylchloride (TMSCl) and a 

catalytic amount of iso-amarine (116), IAM (111) or IBAM (113) (Scheme 146). 

 

 

Scheme 146: catalytic bromochlorination of styrene 

 

The reaction was proprosed to proceed via the nucleophilic attack of the catalyst 116 on 

NBS (226) to form the brominated catalytic intermediate 117 (Scheme 147). This then 

delivers bromine to the alkene (266) and the succinimide anion picks up a trimethylsilyl 

group from TMSCl. The liberated chloride subsequently attacks the bromonium ion (265) 

regiospecifically to form the bromochlorinated product 262. 
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Scheme 147: original proposed mechanism for the bromochlorination of styrene (266) 

 

We demonstrated this bromochlorination to be both repeatable and applicable to a range of 

alkene substrates (Table 25). The method was used routinely to prepare authentic racemic 

bromochlorides for NMR and HPLC analysis. 
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Table 25: catalylic bromochlorination of alkenes 
 

 

 

Entry 
Alkene starting material 

(302) 

Bromochlorinated product 

(303) 
Yield 

1 

  

90% 

2 
  

66% 

3 
 

 

95% 

4 

 
 

Quantitative 

 

It was hypothesized that the IBAM (113) - catalysed bromochlorination of trans-β-

methylstyrene (18) presented an excellent candidate for the implementation of our findings 

from the exchange studies. This reaction was accordingly conducted at -78 ºC and the 

enantiomeric excess of the bromochlorinated product 274/275 was analysised by chiral 

HPLC (Scheme 148). 

 

 

Scheme 148: attempted asymmetric bromochlorination of trans-β-methylstyrene (18) 

 

Disappointingly, racemic 2-bromo-1-chloro-1-phenylpropane (274/275) was obtained, 

bromine transfer to the alkene occurring with no asymmetric induction.  
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However, studies into the uncatalysed background reaction of the bromochlorination led us 

to doubt the originally posed mechanism of bromination via an active catalyst-Br+ 

intermediate (Scheme 147). The reaction of trans-β-methylstyrene (18) with NBS and 

TMSCl in the absence of catalyst demonstrated the slow conversion of alkene to exclusively 

the bromochloride product (entry 1, Table 26). This presumably occurs by bromination of the 

alkene directly by NBS, subsequent silylation of the succinimide anion and attack of chloride 

on the bromonium ion.  

 

Table 26: Studies into the effect of catalyst and chloride source 

 

 

 

Entry Chloride source Catalyst Conversiona 274/275 : 19/20 
ratio 

1 TMSCl _ 
25 min: 3% 

2h 25 min: 15% 

100 : 0 

100 : 0 

2 TMSCl 
R-IBAM (113) 

(5 mol%) 

25 min: 43% 

2h 25 min: 71% 

80 : 20 

83 : 17 

3 
 282 

_ 20 min: 87% 85 : 15 

4 
282 

R-IBAM (113) 

(5 mol%) 
20 min: 93% 90 : 10 

 
a – conversion of trans-β-methylstyrene (18) to bromochloride (274/275) and dibromide (19/20) 

 

However, all catalysed bromochlorinations demonstrated a considerable amount of 

dibromide 19/20 in the crude product mixture (up to 17%; entries 2 and 4, Table 26). On 

investigating the use of free, anionic sources of chlorine in the absence of catalyst (entry 3, 

Table 26), not only a similar rate of bromochlorination was observed to that obtained in the 

NBS/TMSCl/catalyst system, but also a similar product distribution. 
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Thus, an alternative mechanism for Kwok’s catalytic bromochlorination of alkenes is 

proposed, involving the release of free chloride by IBAM (113) via the nucleophilic attack of 

the amidine on TMSCl (Scheme 149). This then goes on to attack the electrophilic bromine 

of NBS, forming BrCl, and this is the reactive species which then goes on to brominate the 

alkene. 

 

 

Scheme 149: revised mechanism for the catalytic bromochlorination of alkenes 
 

The dibromide 19/20 formation originates from the generation of molecular bromine via the 

equilibrium; 

 

 

This proposed mechanism is also in agreement with Kwok’s observation that the rate of 

reaction decreases on transition from the use of TMSCl to TESCl and finally to TIPSCl as 

the chloride source. As the bulk of the alkyl groups around the silicon atom increases, the 

attack of the catalyst on the silicon becomes more sterically encumbered and thus slower, 

reducing the rate of reaction. 

 

Thus, in this instance, it is proposed that IBAM (113) is acting as a nucleophilic catalyst to 

release chloride rather than catalytically delivering Br+ to the alkene. Therefore, it is not 

surprising that bromine is delivered with no enantioselectivity in our catalytic reaction, as the 

active brominating species (BrCl) is achiral. 
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4.4. Conclusion 

 

Bromonium ion – alkene exchange has been identified as a dominant and important factor in 

our catalytic asymmetric bromination reaction of alkenes. In order to study such a 

phenomenon in an asymmetric context, a method for the controlled generation and 

subsequent trapping of the first example of an enantiopure bromonium ion has been 

developed via the rearrangement of enantiopure bromohydrin 271/277. Subsequent 

investigations into bromonium ion – alkene exchange have demonstrated that whilst 

concentration and alkene equivalents have little impact on the degree of Br+ exchange 

occurring in our system, the structure of the “donor” bromonium ion and the “acceptor” 

alkene exert a profound effect. The solvent and the leaving group employed for the 

rearrangement have also been demonstrated to have some impact on the degree of 

exchange observed.  

 

From our findings, it can be concluded that the generation of an enantiopure, aliphatic 

bromonium ion will best facilitate our study of the stereochemical consequences of 

exchange. An enantiopure, aliphatic bromonium ion should demonstrate a considerably 

greater propensity for Br+ transfer to added alkene than our enantiopure bromonium ion 

generated from (2S)-1-bromo-1-phenylpropan-2-ol (271/277). Thus, any racemisation 

resulting from bromonium ion – alkene exchange should be observed in the rearranged 

product and be detectable by chiral HPLC. Conversely, the most appropriate choice of 

substrate for an asymmetric catalytic bromination reaction is an alkene which generates a 

highly asymmetric bromonium ion; a high degree of β-bromocarbonium ion character having 

been shown to decrease the degree of exchange observed. 

 

 

4.5. Further work 

 

4.4.1. Bromonium ion –alkene Br+ exchange 

 

Lepore’s leaving group has, to date, only been applied to our (2S)-1-bromo-1-phenylpropan-

2-ol (271/277) substrate; a substrate which only demonstrated a small degree of exchange 

on reaction with Viehe’s salt due to the high β-bromocarbonium ion character of the 

intermediate bromonium ion. Further work will apply Lepore’s method to an aliphatic 
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bromosulphonate 305 and investigate Br+ exchange from the bromonium ion generated in its 

rearrangement.  

 

Figure 84: aliphatic bromosulphonate (305) 

 

The synthesis of a chiral, enantiopure, aliphatic bromohydrin 306 will also be undertaken. 

From our findings, it is proposed that this substrate and its rearrangement using either 

Lepore’s conditions or Viehe’s salt (282) should allow a definitive study of the 

stereochemical consequences of bromonium ion – alkene Br+ exchange. 

 

 
Scheme 150: Br

+
 exchange in a chiral, aliphatic system 

 

Further work may also be undertaken to fully realise the potential of the stereoselective 

rearrangement of bromohydrins using Lepore’s arylsulphonate leaving group. This method 

of generating and trapping an enantiopure bromonium ion could, in theory, be utilized to 

form a wider selection of enantiopure brominated products via trapping the bromonium ion 

with other nucleophiles. This is easily achieved by simply varying the metal salt added to 

promote the explusion of the leaving group to include additives with different anionic 

components. Furthermore, if the metal salt has a non-coordinating anion (e.g. triflate) the 

bromonium ion could be opened by an internal nucleophile in an intramolecular cyclisation. 

Lepore had already demonstrated that lithium cations are excellent chelators of the 

polyethylene side chain of Lepore’s sulphonate.125 Thus, lithium triflate should be an 

appropriate choice of metal salt for leaving group activation when attack of an internal 

nucleophile is desired. An example of the application of such methodology is the formation 

of the enantiopure bromonium ion 310 via the action of lithium triflate on the sulphonate 
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leaving group in 309 (Scheme 151).126 The bromonium ion would then promote 

diastereoselective polyene cyclisation to give enantiomerically pure product 311.  

 

 

Scheme 151: enantiopure bromonium ion triggered polyene cyclisation 
 

This would not only test the wider applicability of our generation of an enantiopure pure 

bromonium ion in a controlled fashion, but it would also form the basis of an asymmetric 

approach to a range of natural products (312-315, Figure 85). 

 

Figure 85: examples of natural products possessing the α,α-dimethylcyclohexyl bromide 
moiety 

 

4.4.2. Catalytic Asymmetric Electrophilic Bromination of Alkenes  

 

Whilst initial attempts to make an educated modification of the substrate and nucleophile in 

our catalytic asymmetric bromination failed (section 4.3), the theory behind such a strategy 

is still sound. Based on our previous findings, possible attractive substrates include alkenoic 

acids such as 316 (Scheme 152), which should display a considerably lower rate of Br+ 

exchange due to a high degree of β-bromocarbonium ion character in the intermediate 

bromonium ion 317. 

 
 

Scheme 152: favourable substrate for catalytic asymmetric bromolactonisation 
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Another possible modification of the substrate is to make the transition from alkenoic acids 

(61b) to alkenols (60b). The more nucleophilic alcohol moiety should attack the bromonium 

ion intermediate more rapidly and thus ring closure will compete more effectively with Br+ 

transfer. 

 
Figure 86: representative alkenoic acid (61b) and alkenol (60b) 

 

The possibility of the addition of a nucleophile to open the bromonium ion can also be 

explored in more detail. It would seem favourable in the light of our findings in our exchange 

studies to include a powerful nucleophile to rapidly trap the bromonium ion as it is formed. 

However, our initial experiments in implementing this proposal revealed competition 

between the attack of the added nucleophile with the attack of the asymmetric catalyst on 

the electrophilic bromine of NBS. This was identified as a problem in our catalytic 

bromochlorination system, where the active electrophilic brominating species was the achiral 

BrCl, resulting in no enantioselectivity in the bromination. Thus, it appears imperative to 

strike a balance in the potency of the nucleophile to facilitate the rapid opening of the 

bromonium ion but to minimise its attack on the electrophilic bromine of NBS or the catalyst-

Br+ species (Figure 87). 

 

 

Figure 87: possible modes of nucleophilic attack with our catalytic bromination reaction 
 

It is possible that the selection of a “hard” nucleophile may favour attack at the carbon 

center of a bromonium ion rather than at “softer” electrophilic bromine. Thus, a good 

selection of nucleophile in further investigations may include anionic oxygen nucleophiles 

such as acetate or tosylate.  

 

The association of the nucleophile with the catalyst itself is also hypothesized as being a 

favourable modification. This, in theory, should facilitate the rapid delivery of the nucleophile 

to open of the bromonium ion immediately after its formation. Therefore, the mono- and bis- 
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salts of IBAM (320 and 321, Figure 88) will be investigated as potential catalysts, 

incorporating such catalyst – nucleophile association.  

 

 
Figure 88: mono- and bis- salts of IBAM 

 

Although N-functionalisation of the catalyst has been attempted and failed to produce any 

increase in the enantioselectivity of the reaction, other modifications to IBAM (113) are also 

possible to promote I(III)-Br over N-Br bond formation. The introduction of electron donating 

groups, such as methoxy, para to the iodine on the benzene ring core of the catalyst should 

increase the iodine’s nucleophilicity (Figure 89). Consequently, the iodine’s capacity to 

attack bromine on the amidine nitrogen in the oxidative addition to form the N-I(III)-Br bond 

should also be increased. Additionally, the hypervalent N-I(III)-Br intermediate should be 

stabilised due to the additional electron density placed on the electron deficient hypervalent 

iodine. 

 

 

Figure 89: stabilisation of hypervalent iodine by increasing electron density on iodine 
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5. Conclusion 

 

Over the course of our research, the competitive non-asymmetric delivery of bromine to the 

substrate via an N-Br catalytic intermediate has been identified as a significant factor 

leading to a depreciation of the enantioselectivity of the asymmetric bromination reaction. 

This phenomenon is dependent on the catalyst loading; an optimum in the asymmetric 

induction of the bromination being reached at a loading of 5 mol%.  

 

The exchange of Br+ between asymmetrically formed chiral bromonium ions and unreacted 

alkene starting material has also been proposed and investigated as a mechanism by which 

the enantioexcess of the isolated product is reduced. Investigations into this phenomenon 

have demonstrated the extent of such exchange to be dependent on the structure of both 

the “donor” bromonium ion and the “acceptor” alkene. The proximity of the nucleophile to the 

bromonium ion upon its generation is also proposed to have a significant impact on the 

degree to which exchange is observed. Any further modifications made to our asymmetric 

catalytic bromination system should be made with consideration of these factors.  
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6. Experimental Section 

 

6.1. General Information 

 

Analytical Methods: Melting points were recorded on a Reichart Thermovar melting point 

apparatus and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 241 

polarimeter with a path length of 1 dm using the 589.3 D-line of sodium. Solutions were 

prepared using spectroscopic grade solvents and concentrations (c) are quoted in g/100 mL. 

Fourier transform infra-red (IR) spectra were recorded as thin films on NaCl plates using a 

Mattson 500 FT IR spectrometer. 1H NMR were recorded at 270 MHz on a Jeol GSX-270 

spectrometer, 300 MHz on a Bruker DRX-300 spectrometer, 400 MHz on either a Bruker 

DRX-400 spectrometer or a Bruker AV-400 spectrometer and 500 MHz on a Bruker AV-500 

spectrometer. 13C NMR were recorded at 68 MHz on a Jeol GSX-270 spectrometer, 75 MHz 

on a Bruker DRX-300 spectrometer, 100 MHz on either a Bruker DRX-400 spectrometer or 

a Bruker AV-400 spectrometer and 125 MHz on a Bruker AV-500 spectrometer. Spectra 

recorded at 500 MHz (1H NMR) and 125 MHz (13C NMR) were performed by the Imperial 

College Department of Chemistry NMR Service. NMR samples were run in the indicated 

solvents ane were referenced internally. All chemical shift values are quoted in parts per 

million (ppm) and coupling constants quoted in Hz. The following abbreviations are used for 

the multiplicity of NMR signals: br = broad, s = singlet, d = doublet, dd = doublet of doublets, 

t = triplet, dt = doublet of triplets, m = multiplet. Low Resolution Mass Spectra (MS) [EI, CI, 

ES and FAB] and High Resolution Mass Spectra (HRMS) were recorded by the Imperial 

College Department of Chemistry Mass Spectroscopy Service. GC-MS spectra were 

recorded on a HP 5890 Series II gas chromatograph and HP 5972 MS detector with a HP 5 

MS column (30 m, i.d. 0.25 mm, film µm). HPLC was performed on a HP-1100 liquid 

chromatograph. All elution times are stated in minutes. X-ray crystal structure was obtained 

at Imperial College Crystallographic Service using an OD Xcalibur 3 diffractometer or an OD 

Xcalibur PX Ultra diffractometer. Microanalyses were performed by Mr. S. Boyer at London 

Metropolitan University, UK.  

 

Experimental Procedures: Analytical thin-layer chromatography (TLC) was carried out on 

silica gel F254/366 60 Å plates with visualisation using UV light (254 nm) or potassium 

permanganate as appropriate. Chromatography was performed using BDH 33-70 µm grade 

silica gel. Air and moisture sensitive reagents were transferred via syringe or cannular and 
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reactions involving these materials were carried out in oven dried flasks under a positive 

pressure of nitrogen.  

 

Solvents: Dichloromethane was distilled from calcium hydride. Diethylether was distilled 

from sodium/benzophenone. THF was distilled from potassium/benzophenone. Ethanol was 

distilled from and stored over 4 Å molecular sieves. Chloroform and deuterated chloroform 

were stored over potassium carbonate. All other solvents were used as received. Petrol 

refers to BDH Anal® petroleum spirit 40-60 °C. Water refers to distilled water.  

 

Materials: N-Bromosuccinimide was purified by re-crystallisation according to standard 

procedures.127 Triethylamine was distilled under nitrogen and stored over sodium hydroxide 

pellets. Benzoyl chloride and benzaldehyde were distilled under nitrogen before use. (R)- 

and (S)-mandelic acid was recrystalised from chloroform. All other reagents were used as 

received. 4-Phenylpent-4-enoic acid (216) was prepared in house by Gemma Cansell.  

 

 

6.2. Synthesis and Resolution of 1,2-Diphenylethylenediamine 

 

cis-4,5-Dihydro-2,4,5-triphenyl-1H-imidazole (amarine) (161)  

 

N NH

Ph

Ph Ph  

 

Benzaldehyde (96 mL, 950 mmol) and hexamethyldisilazane (240 mL, 1.15 mol) were 

stirred at 120 °C under an inert atmosphere of nitrogen with a catalytic amount of benzoic 

acid (575 mg, 4.7 mmol). After 24 h, crude 1H NMR analysis of a sample removed from the 

reaction mixture indicated the reaction had gone to completion, with only trace amounts of 

benzaldehyde and the imine intermediate remaining. On cooling to RT an amorphous yellow 

solid formed and the entire mixture was taken up in toluene (500 mL). The organic phase 

was washed with saturated aqueous sodium hydrogen carbonate (2 × 250 mL), water 

(250 mL), brine (250 mL), dried (MgSO4), filtered and concentrated in vacuo. The resulting 

residue was purified by re-crystallisation from toluene/diethyl ether to yield cis-4,5-dihydro-
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2,4,5-triphenyl-1H-imidazole (161) (57 g, 61%) as a white crystalline solid with spectral data 

consistent with literature:128 m.p. 124-127 °C [lit.128 127-128 °C]; FT IR (NaCl) νmax 3383 (br), 

3175 (br), 3061, 3028, 2920, 2953, 1952 (w), 1895 (w),1808 (w), 1615, 1599, 1570, 1503 

cm-1; 1H NMR (270 MHz, CDCl3) δ 7.97 (d, J = 6.9 Hz, 2H, Ar-H), 7.49-7.47 (m, 3H, Ar-H), 

7.00-6.95 (m, 10H, Ar-H), 5.45 (s, 2H, NCH), 4.75 (br s, 1H, NH) ppm; 13C NMR (68 MHz, 

CDCl3) δ 164.6, 138.9, 131.2, 129.9, 128.8, 127.7, 127.6, 127.4, 126.9, 70.8 ppm; MS (CI+) 

299 (M+H+); HRMS calcd for (M+H+) C21H19N2 299.1548, found 299.1543. 

 

 

(±)-trans-4,5-Dihydro-2,4,5-triphenyl-1H-imidazole (iso-amarine) (116)92 

 

N NH

Ph

Ph Ph
(±)

 

 

A stirred mixture of amidine 161 (42 g, 141 mmol), water (6 mL), diethylene glycol (35 mL) 

and sodium hydroxide (9.0 g, 225 mmol) was boiled in an open beaker until the temperature 

reached 155 °C. This was maintained for 45 min, during which time the sodium salt of the 

iso-amarine had precipitated and the solution became a thick slurry. After cooling to RT, the 

slurry was treated with glacial acetic acid (25 mL), diluted with ethanol (125 mL) and heated 

to boiling (105 °C) until all remaining solid had dissolved. After cooling, the solution was 

basified with concentrated aqueous ammonia. The resulting tan precipitate was filtered, 

washed with cold ethanol, and dried in vacuo. The crude product was re-crystallised from 

toluene to yield racemic trans-4,5-dihydro-2,4,5-triphenyl-1H-imidazole (iso-amarine) (116) 

(29 g, 70%) as colourless fine needles with spectral data consistent with literature:128 m.p. 

199-204 °C [lit.92 198-201 °C]; Rf = 0.33 (1:19, methanol/dichloromethane); FT IR (NaCl, 

nujol®) νmax 3145 (br), 3027, 1953 (w), 1889 (w), 1810 (w), 1594, 1565, 1509 cm-1; 1H NMR 

(270 MHz, CDCl3) δ 7.94 (dd, J3 = 8.3 Hz, J4 = 1.9 Hz, 2H, Ar-H), 7.51-7.25 (m, 13H, Ar-H), 

5.42 (br s, 1H, NH) 4.90 (s, 2H, NCH) ppm; 13C NMR (68 MHz, CDCl3) δ 163.1, 143.6, 

131.1, 130.2, 128.8, 128.7, 127.6, 127.5, 126.9, 71.8 ppm; MS (CI+) 299 (M+H+); HRMS 

calcd for (M+H+) C21H19N2 299.1548, found 299.1554. 
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(R)-(–)-α-Acetoxyphenyl acetic acid (173)107 

 

 

 

(R)-(–)-Mandelic acid (172) (25.5 g, 168 mmol) was added in three portions to a stirred flask 

containing acetyl chloride (60 mL) at 0 °C. The resulting solution was allowed to warm to RT 

and stirred for a further 15 h under an inert atmosphere of nitrogen. The solvent was 

removed in vacuo and the resulting crude product was re-crystallised from hot toluene to 

yield (R)-(–)-α-acetoxyphenyl acetic acid (173) (26.4 g, 81%) as a colourless crystalline solid 

with spectral data consistent with literature:129 m.p. 96-98 °C [lit.107 96-98 °C]; Rf = 0.60 (ethyl 

acetate) [α]25
D = -146.0 (c = 12.1, CHCl3) [lit.

129 [α]25
D = -154 (c = 1.01, CHCl3)]; FT IR (NaCl) 

νmax 3500-2500 (br), 1702 cm-1; 1H NMR (300 MHz, CDCl3) δ 10.76 (br s, 1H, COOH), 7.51-

7.41 (m, 5H, Ar-H), 5.95 (s, 1H, PhCH), 2.22 (s, 3H, COOCH3) ppm; MS (CI+) 212 

(M+NH4
+); HRMS calcd for (M+NH4

+) C10H14NO4 212.0923, found 212.0926. 

 

 

(R)-α-Acetoxybenzeneacetyl chloride (174) 

 

 

 

Two drops of DMF were added to a solution of (R)-acetylmandelic acid (173) (250 mg, 

1.29 mmol) and oxalyl chloride (133 µL, 1.55 mmol) in dichloromethane. After stirring at RT 

for 1 h the effervescence had stopped, and the solution was concentrated in vacuo to yield 

(R)-α-acetoxybenzeneacetyl chloride (174) (274 mg, quantative) as a yellow oil with spectral 

data consistent with literature:130 Rf 0.36 (ethyl acetate); [α]25
D = -148.6 (c, 10.7, CH2Cl2), 

[lit.130 [α]D
20 = -173.6 (c, 1.2, CH2Cl2)]; IR (NaCl) νmax 3067, 3036, 2943, 1963 (w), 1785, 

1754 cm-1; 1H NMR (270 MHz, CDCl3) δ 7.48-7.39 (m, 5H, Ar-H), 6.07 (s, 1H, CH), 2.19 (s, 

3H, COOCH3). 
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(–)-(4R,5R)-1-[(R)-α-Acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (175)      

and (+)-(4S,5S)-1-[(R)-α-acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole 

(176) 

 

 

 

Racemic trans-4,5-dihydro-2,4,5-triphenyl-1H-imidazole (116) (32 g, 107 mg) and (R)-α-

acetoxyphenyl acetic acid (173) (25 g, 129 mmol) were stirred in dichloromethane (350 mL) 

at -20 ºC under an inert atmosphere of nitrogen. DCC (27 g, 129 mmol) was added and the 

reaction mixture was allowed to slowly warm to RT. After 5 h a voluminous white precipitate 

had formed. The reaction mixture was filtered and the filtrate was concentrated in vacuo to 

yield the crude product as a mixture of diastereoisomers 175 and 176 (58.8 g, quantitative). 

The crude mixture of diastereomers 175 and 176 was taken up in refluxing diisopropyl ether 

(1050 mL). The solution was then allowed to slowly cool to RT and after 15 h was cooled to 

0 ºC for a further 5 h. The resulting crystals were filtered, washed with a small amount of 

cold diisopropyl ether and dried under reduced pressure to yield pure (–)-(4S,5S)-1-[(R)-α-

acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (176) (17.2 g, 68%) as 

colourless crystals: m.p. 170-171 °C; Rf = 0.33 (2:1, petrol/ethyl acetate); [α]25
D = –107.5 (c 

= 9.1, CHCl3); FT IR (NaCl) νmax 3063, 3029, 2979, 2936, 1956 (w), 1892 (w), 1807 (w), 

1738, 1707, 1626 cm-1; 1H NMR (270 MHz, CDCl3) δ 7.83 (d, J = 6.5 Hz, 2H, Ar-H), 7.51-

7.12 (m, 16H, Ar-H), 6.97-6.92 (m, 2H, Ar-H), 5.55 (s, 1H, NC(=O)CH), 5.04 (d, J = 2.5 Hz, 

1H, NCHPh), 4.99 (d, J = 2.5 Hz, 1H, NCHPh), 2.03 (s, 3H, COOCH3) ppm; 13C NMR (68 

MHz, CDCl3) δ 170.4, 166.2, 159.8, 140.3, 140.3, 131.8, 131.1, 130.9, 129.9, 129.5, 129.2, 

128.9, 128.9, 128.6, 128.2, 127.9, 126.0, 125.3, 78.6, 75.1, 68.1, 20.7 ppm; MS (CI+) 475 

(M+H+); HRMS calcd for (M+H+) C31H27N2O3 475.2022, found 475.2030; Anal. calcd for 

C31H26N2O3: C, 78.46; H, 5.52; N, 5.90; found: C, 78.53; H, 5.47; N, 5.94; Crystal data for 

176: C31H26N2O3, M = 474.54, orthorhombic, P212121, (no. 19), a = 10.1710(7), b = 

14.6196(9) c = 17.2572(11) Å, V = 2566.1(3) Å3, Z = 4, Dc = 1.228 g cm–3, µ(Cu-Kα) = 0.633 

mm–1, T = 173 K, colourless blocks, Oxford Diffraction Xcalibur PX Ultra diffractometer; 4696 

independent measured reflections, F2 refinement, R1 = 0.039, wR2 = 0.101, 4638 

independent observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 137°], 329 



 200

parameters. The absolute structure of 176 could not be unambiguously determined by either 

an R-factor test [R1
+ = 0.0390, R1

– = 0.0392] or by use of the Flack parameter [x+ = 0.0(2), x– 

= 1.1(2)] and so was assigned by internal reference. The combined filtrates were 

concentrated in vacuo to give an amorphous solid (37.5 g, 79.1 mmol) containing (R,R,R) 

diastereomer 175 in a 4:1 excess over (R,S,S) diastereomer 176. A portion of this mixture 

could be purified by column chromatography (4:1→3:1, petrol/ethyl acetate) to produce 

analytically pure (R,R,R) diastereomer 175: m.p. 67-73 °C; Rf = 0.39 (2:1, petrol/ethyl 

acetate);  [α]25
D = –38.8 (c = 2.3, CHCl3); FT IR (NaCl) νmax 3062, 3029, 2927, 2854, 1957 

(w), 1889 (w), 1808 (w), 1737, 1704, 1693 cm-1; 1H NMR (270 MHz, CDCl3) δ 7.70-6.86 (m, 

20H, Ar-H), 5.83 (br s, 1H, NCHPh), 5.45 (br s, 1H, NCHPh), 5.06 (s, 1H, NC(=O)CH), 1.98 

(s, 3H, COOCH3) ppm; 13C NMR (68 MHz, CDCl3) δ 170.7, 142.3, 140.4, 132.2, 131.3, 

131.1, 129.6, 129.5, 129.0, 128.8, 128.5, 128.3, 128.0, 126.4, 125.6, 78.5, 75.6, 70.7, 20.5 

ppm; MS (CI+) 475 (M+H+); HRMS calcd for (M+H+) C31H27N2O3 475.2022, found 475.2018. 

 

 

(+)-N-(R)-Acetoxyphenylacetyl-N’-benzoyl-(1S,2S)-1,2-diphenylethylene diamine (177) 

 

 

 

 (–)-(4S,5S)-1-[(R)-α-Acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-triphenylimidazole (176) 

(16.8 g, 35.4 mmol) was suspended in a mixture of THF (50 mL), water (100 mL) and 

concentrated hydrochloric acid (10 mL). The mixture was heated to reflux for 2 h, after which 

it was allowed to cool to RT and concentrated to 2/3 of its original volume in vacuo. After 

standing at RT for 1 h, the white precipitate was filtered, washed with cold water and dried 

by dry stirring at 60 ºC under vacuum to yield diamide 177 (16.1 g, 92%) as a fine colourless 

solid: m.p. >230 °C; [α]25
D = +7.3 (c = 4.3 , 10:1, CHCl3/MeOH ); FT IR (NaCl) νmax 3308, 

3065, 3035, 3015, 1964 (w), 1731, 1668, 1641, 1578, 1539 cm-1; 1H NMR (270 MHz, 

DMSO-d6) δ 9.05 (d, J = 7.6 Hz, 1H, NH), 8.98 (d, J = 7.4 Hz, 1H, NH), 7.78 (d, J = 6.9 Hz, 

2H, Ar-H), 7.54-7.44 (m, 3H, Ar-H), 7.26-7.10 (m, 15H, Ar-H), 5.88 (s, 1H, NC(=O)CH), 5.50 

(t, J = 7.5 Hz, 1H, NCHPh), 5.45 (t, J = 7.5 Hz, 1H, NCHPh) 2.11 (s, 3H, COOCH3) ppm; 13C 

NMR (68 MHz, DMSO-d6) δ 170.0, 168.1, 166.9, 140.9, 140.6, 136.0, 135.1, 131.8, 128.8, 

128.4, 128.3, 128.0, 128.0, 127.8, 127.4, 75.7, 58.2, 57.3, 21.3 ppm; MS (CI+) 493 (M+H+); 
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HRMS calcd for (M+H+) C31H29N2O4 493.2127, found 493.2123; Anal. calcd for C31H28N2O4: 

C, 75.59; H, 5.73; N, 5.69; found: C, 75.52; H, 5.80; N, 5.71. 

 

 

(–)-N-(R)-Acetoxyphenylacetyl-N’-benzoyl-(1R,2R)-1,2-diphenylethylene diamine (179) 

 

 

 

The combined filtrates from the re-crystallization of diastereomer 176 were suspended in a 

mixture of THF (120 mL), water (240 mL) and concentrated hydrochloric acid (24 mL), and 

the reaction proceeded as outlined above in the formation of pure diamide 177 to yield the 

diamide product as a 4:1, (R,R,R):(R,S,S) mixture of diastereomers (30.8 g, 79%). The 

crude solid was dissolved in refluxing chloroform (1.9 L) and the hot solution was allowed to 

cool slowly to RT. On cooling the pure (R,R,R) diamide precipitated, and was collected by 

filtration. Removal of a further 600 mL of solvent in vacuo and cooling to 0 ºC resulted in the 

precipitation on a second crop of diastereomerically pure R,R,R diamide, which was again 

collected by filtration. The two crops were combined and dried in vacuo to yield pure 

diamide 179 (13.6 g, 58%) as a colourless solid: m.p. >230 °C; [α]25
D = –69.5 (c = 2.3, 10:1, 

CHCl3/MeOH ); FT IR (NaCl, nujol®) νmax 3305, 1739, 1667, 1633, 1602, 1579, 1520 cm-1; 1H 

NMR (270 MHz, DMSO-d6) δ 9.08 (d, J = 8.1 Hz, 1H, NH), 8.81 (d, J = 8.8 Hz, 1H, NH), 7.66 

(d, J = 7.4 Hz, 2H, Ar-H), 7.56-7.41 (m, 3H, Ar-H), 7.31-7.10 (m, 15H, Ar-H), 5.88 (s, 1H, 

NC(=O)CH), 5.45 (t, J = 8.6 Hz, 1H, NCHPh), 5.32 (t, J = 8.4 Hz, 1H, NCHPh), 2.01 (s, 3H, 

COOCH3) ppm; 13C NMR (68 MHz, DMSO-d6) δ 170.0, 168.0, 166.6, 140.9, 140.9, 136.0, 

135.0, 131.7, 128.7, 128.3, 127.9, 127.8, 127.6, 127.4, 127.3, 75.6, 57.9, 57.6, 21.1 ppm; 

MS (CI+) 493 (M+H+); HRMS calcd for (M+H+) C31H29N2O4 493.2127, found 493.2148; Anal. 

calcd for C31H28N2O4: C, 75.59; H, 5.73; N, 5.69; found: C, 75.64; H, 5.77; N, 5.61. 
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(–)-(1S,2S)-1,2-Diphenylethylene diamine (124S) 

 

 

 

A mixture of (+)-N-(R)-acetoxyphenylacetyl-N’-benzoyl-(1S,2S)-1,2-diphenylethylene 

diamine (177) (12.8 g, 25.9 mmol), glacial acetic acid (33 mL) and 48% aqueous 

hydrobromic acid (65 mL) were refluxed for 6 h. At this point, further portions of aqueous 

hydrobromic acid (15 mL) and acetic acid (8 mL) were added, and the reaction was refluxed 

for a further 20 h. The solution was concentrated to 1/3 its original volume, cooled to 5 ºC, 

and allowed to stand for 15 h at RT. The resulting precipitate was filtered, washed with cold 

diethyl ether and dissolved in 30 mL of water. The aqueous solution was filtered to remove 

insoluble by-products, and the residue was washed with a further 10 mL of water. Aqueous 

sodium hydroxide solution (40%, ca. 4.5 mL) was added slowly to the filtrate such that the 

temperature did not exceed 25 oC. The mixture was cooled to 5 ºC for 15 min and the 

resulting precipitate from the aqueous phase was extracted with ether (3 × 80 mL). The 

organic layers were combined, dried over solid sodium hydroxide, filtered and concentrated 

in vacuo. The crude product was re-crystallised from petrol/diethyl ether (10 mL : 20 mL) to 

yield diamine 124S (1.9 g, 34%) as a colourless, crystalline solid with spectral data 

consistent with literature:102 m.p. 81-84 °C [lit.131 83-85 °C]; [α]25
D = –91.0 (c = 4.6, EtOH) 

[lit.132 [α]25
D = –87.1 (c = 2.3, EtOH)]; FT IR (NaCl) νmax 3360 (br), 3295 (br), 3060, 3028, 

2908, 2857, 1952 (w), 1884 (w), 1811 (w) 1647, 1601 cm-1; 1H NMR (270 MHz, CDCl3) δ 

7.27-7.25 (m, 10H, Ar-H), 4.09 (s, 2H, NCH), 1.62 (br s, 4H, NH2) ppm; 13C NMR (68 MHz, 

CDCl3) δ 143.5, 128.3, 127.1, 127.0, 62.0 ppm; MS (CI+) 213 (M+H+); HRMS calcd for 

(M+H+) C14H16N2 213.1392,  found 213.1390. The optical purity was assessed by the 

Synder’s method employing the use of mandelic acid as a chiral solvating agent in 1H NMR 

analysis of the chiral amines.109 

 

 

(+)-(1R,2R)-1,2-Diphenylethylene diamine (124R) 
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Following the above procedure starting from diamide 179 (12.5 g, 25.5 mmol) gave diamine 

124R (2.46 g, 46%) as a colourless, crystalline solid with spectral data consistent with 

literature:102 m.p. 78-82 °C [lit.133 79-83 °C]; [α]25
D =  +90.7 (c = 3.4, EtOH) [lit.134 [α]25

D = 

+90.4 (c = 1.9, EtOH)]. The other spectral data is identical to that for its enantiomer. 

 

 

(+)-(4R,5R)-4,5-Dihydro-2,4,5-triphenyl-1H-imidazole (116R) 

 

N NH

Ph

PhPh  

 

Racemic iso-amarine 116 (5.00 g, 16.8 mmol) and (S)-(+)-mandelic acid (172) (2.55 g, 16.8 

mmol) were dissolved in refluxing isopropanol (28 mL). After refluxing for 1 h, heating was 

stopped and the flask was left in the oil bath to cool slowly to RT with gentle stirring. After 

16 h, the solution was cooled to 0 oC and left to stir for a further 4 h. The resulting white 

crystals were collected by filtration through a cold scinter and dried in vacuo. The salt was 

re-crystallised to optical purity from further isopropanol and the crystals dried in vacuo to 

yield the 1:1 mandelic acid: iso-amarine diastereomeric salt 182 (2.99 g, 87%): m.p. 181-

185 ºC; [α]25
D =  +128.0 (c = 2.3, EtOH); FT IR (NaCl, nujol®) νmax 3430, 3065, 3025, 3100-

2000 (br), 1969 (w), 1882 (w), 1807 (w), 1589, 1555 cm-1; 1H NMR (270 MHz, DMSO-d6) δ 

8.05 (d, J = 6.7 Hz, 2H, Ar-H), 7.62-7.52 (m, 3H, Ar-H), 7.41-7.20 (m, 15H, Ar-H), 4.95 (s, 

2H, NCHPh), 4.82 (s, 1H, PhCH(OH)CO2) ppm; 13C NMR (68 MHz, DMSO-d6) δ 174.7, 

163.3, 143.1, 142.0, 132.5, 129.3, 129.3, 129.1, 128.5, 128.4, 127.6, 127.2, 127.1, 101.8, 

73.3 ppm; MS (FAB+) 299 (cation) 452 (cation+anion+2H+); MS (FAB-) 151 (anion); Anal. 

calcd for C29H26N2O4: C, 77.31; H, 5.82; N, 6.22; found: C, 77.42; H, 5.91; N, 6.15. Crystal 

data for 182: C29H26N2O3, M = 450.52, orthorhombic, P212121, (no. 19), a = 8.6149(5), b = 

16.0588(8) c = 17.2764(8) Å, V = 2390.1(2) Å3, Z = 4, Dc = 1.252 g cm–3, µ(Cu-Kα) = 0.650 

mm–1, T = 293 K, colourless prisms, Oxford Diffraction Xcalibur PX Ultra diffractometer; 

4365 independent measured reflections, F2 refinement, R1 = 0.047, wR2 = 0.107, 3623 

independent observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 137°], 317 

parameters. The absolute structure of 182 could not be unambiguously determined by either 

an R-factor test [R1
+ = 0.0472, R1

– = 0.0472] or by use of the Flack parameter [x+ = 0.1(3), x– 
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= 0.9(3)] and so was assigned by internal reference. The diastereomeric salt (2.77 g, 6.16 

mmol) was suspended in dichloromethane (150 mL) and 1M aqueous sodium hydroxide 

(100 mL) was added. The biphasic mixture was rapidly stirred until all the solid had 

dissolved and the organic layer was separated. The aqueous layer was re-extracted with 

dichloromethane (100 mL) and the combined organic layers were washed with water (100 

mL), dried (MgSO4) and concentrated in vacuo to give (R,R)-amidine 116R (1.83 g, 

quantitative) as colourless needles with spectral data consistent with literature:128 m.p. 175-

178 °C [lit.111 180 °C]; [α]25
D =  +46.0 (c = 2.0, EtOH) [lit.111 [α]D = +46.3 (c = 1.1, EtOH)]. 

Other spectral data are identical to that of the racemate (±)-116. 

 

 

(+)-(4S,5S)-4,5-Dihydro-2,4,5-triphenyl-1H-imidazole (116S) 

 

N NH

Ph

PhPh  

 

Racemic iso-amarine 116 (14.0 g, 47 mmol) and (R)-(+)-mandelic acid (7.14 g, 47 mmol) 

were dissolved in refluxing isopropanol (78 mL). After refluxing for 1 h, heating was stopped 

and the flask was left in the oil bath to cool slowly to RT with gentle stirring. After 21 h, the 

solution was cooled to 0 oC and left to stir for a further 4 h. The resulting precipitate was 

collected by filtration through a cold scinter and the residue dried in vacuo. The salt was re-

crystallised to optical purity from further isopropanol and the crystals dried in vacuo to yield 

the 1:1 mandelic acid: iso-amarine diastereomeric salt 182 (8.55 g, 82%): m.p. 189-

191.5 ºC; [α]25
D =  -128.0 (c = 2.07, EtOH); all other spectral data is identical to the other 

enantiomer. The diastereomeric salt (8.5 g, 18.9 mmol) was suspended in dichloromethane 

(50 mL) and 1M aqueous sodium hydroxide solution (50 mL) was added. The biphasic 

mixture was rapidly stirred until all the solid had dissolved and the organic layer was 

separated. The aqueous layer was re-extracted with dichloromethane (50 mL) and the 

combined organic layers were washed with water (50 mL), dried (MgSO4) and concentrated 

in vacuo to give (S,S)-amidine 116S (5.53 g, 98%) as colourless needles with spectral data 

consistent with literature:128 m.p. 174-177 °C [lit.98 177-180 °C]; [α]25
D = -46.2 (c = 1.9, EtOH) 

[lit.111 [α]D = -46.9 (c = 1.0, EtOH)]. Other spectral data are identical to that of the racemate 

(±)-116. 
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(+)-(1S,2S)-N-benzoyl-N’-acetyl-1,2-diamino-1,2-diphenylethane (163S) 101 

 

 

 

A mixture of (S,S)-iso-amarine (116S) (5.0 g, 16.8 mmol), sodium acetate (200 mg, 2.4 

mmol) and acetic anhydride (9 mL) were heated to 150 °C for 3.5 h. Water (20 mL) and 

concentrated hydrochloric acid (1.3 mL) were added and the reaction mixture was heated to 

100 °C. After 2 h, the reaction mixture was filtered whilst still hot and the residue washed 

with water (30 mL) and dried in vacuo to give diamide 163S (5.7 g, 15.9 mmol, 95 %) as a 

colourless fluffy solid: m.p. >230 °C; [α]25
D = +64.9 (c 1.0 , 9:1, CHCl3/MeOH ); FT IR (NaCl, 

nujol®) νmax 3314, 1651, 1633 cm-1; 1H NMR (400 MHz, DMSO-d6) δ 8.89 (d, J = 8.8 Hz, 1H, 

NH), 8.70 (d, J = 8.8 Hz, 1H, NH), 7.76 (d, J = 6.8 Hz, 2H, Ar-H), 7.55-7.45 (m, 3H, Ar-H), 

7.32-7.12 (m, 10H, Ar-H), 5.46 (t, J = 8.4 Hz, 1H, NCHPh), 5.38 (t, J = 8.4 Hz, 1H, NCHPh) 

1.80 (s, 3H, COOCH3) ppm; 13C NMR (100 MHz, DMSO-d6) δ 169.8, 166.9, 141.0, 141.0, 

134.9, 131.8 128.8, 128.4, 127.8, 127.7, 127.4, 58.2, 57.3, 23.1 ppm; MS (CI+) 359 (M+H+); 

HRMS calcd for (M+H+) C23H22N2O2 359.1760, found 359.1771. 

 

 

(-)-(1S,2S)-1,2-diamino-1,2-diphenylethane (124S)  

 

 

 

Starting from diamide 163S (5.0 g, 14.0 mmol) and following the procedure previously 

described for the hydrolysis of (+)-N-(R)-acetoxyphenylacetyl-N’-benzoyl-(1S,2S)-1,2-

diphenylethylene diamine (177) gave diamine 124S (1.44 g, 49%) as colourless needles 

after re-crystallisation (diethyl ether/petrol), with spectral data consistent with literature:102 

m.p. 78-81 °C [lit.135 83-85 °C]; [α]25
D = –106.0 (c = 1, EtOH); [lit.136 [α]20

D = –102 (c = 1.0, 

EtOH)]; other data identical to that previously reported. 
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6.3. Catalyst Synthesis 

 

2-Iodobenzamide (108) 

 

 

 

2-Iodobenzoic acid (2.00 g, 8.1 mmol) was added portion-wise to thionyl chloride (30 mL). 

The solution was heated to reflux for 3.5 h, after which time the solution was allowed to cool 

to RT and was concentrated in vacuo to give a beige solid. The solid was dissolved in dry 

dichloromethane (12 mL) and cooled to 0 ºC. Aqueous ammonia solution (12 mL) was 

added drop-wise to the reaction mixture and the biphasic mixture was stirred at RT for 20 h. 

The resulting white precipitate was collected by filtration, washed with water (2 × 25 mL) and 

dried under vacuum at 40ºC to yield 2-iodo-benzamide (108) (1.46 g, 65%) with spectral 

data consistent with literature:55 m.p. 177-179 °C [lit.137 183-185 °C]; FT IR (NaCl) νmax 3361, 

3181, 1643 cm-1; 1H NMR (300 MHz, DMSO-d6) δ 7.88-7.84 (m, 2H, Ar-H, NH), 7.53 (br s, 

1H, NH), 7.43 (t, J = 7.4 Hz, 1H, Ar-H), 7.34 (d, J = 7.3 Hz, 1H, Ar-H), 7.15 (t, J = 6.9 Hz, 

1H, Ar-H) ppm; 13C NMR (68 MHz, DMSO-d6) δ 171.3, 143.7, 139.7, 131.1, 128.5, 128.3, 

93.7 ppm; MS (CI+) 248 (M+H+); HRMS calcd for (M+H+) C7H6NOI 247.9572, found 

247.9578.  

 

 

(4R,5R)-2-(2-Iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole (R-IAM) (111R) 

 

 

 

Dichloromethane (5.5 mL) was added to a mixture of 2-iodobenzamide (108) (600 mg, 2.4 

mmol) and trimethyloxonium tetrafluoroborate (468 mg, 3.2 mmol) and the resulting white 

suspension was allowed to stir under nitrogen for 22 h. The mixture was concentrated in 

vacuo  and the residue was washed  with dry ether (2 × 1 mL) to yield the crude imidate 
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(844 mg, quantitative) as a colourless solid: 1H NMR (270 MHz, DMSO-d6) δ 8.07 (d, J = 7.9 

Hz, 1H, Ar-H), 7.71-7.61 (m, 2H, Ar-H), 7.43 (dt, 3J = 7.4 Hz, 4J = 1.8 Hz, 1H, Ar-H), 4.24 (s, 

3H, OCH3) ppm; 13C NMR (68 MHz, DMSO-d6) δ 175.8, 140.9, 134.7, 134.0, 130.7, 129.0, 

94.7, 60.9 ppm. The crude imidate (820 mg, 2.4 mmol) was dissolved in dry ethanol (8 mL), 

and (+)-(1R,2R)-1,2-diphenylethylene diamine (124R) (598 mg, 2.8 mmol) was added to the 

solution. The reaction was left to stir at RT under nitrogen for 1.5 h, followed by a further 3 h 

at reflux. The reaction mixture was allowed to cool to RT and concentrated in vacuo. The 

residue was partitioned between 5% aqueous sodium hydroxide solution (30 mL) and 

dichloromethane (30 mL). The organic layer was separated and the aqueous layer was 

washed with dichloromethane (30 mL). The combined organic layers were dried (MgSO4), 

filtered and concentrated in vacuo to give a pale green oil. This was purified by flash column 

chromatography (ethyl acetate) to give the product as a colourless oil. After trituration with 

petrol, 111R was obtained (1.81 g, 77%) as a colourless solid with spectral data consistent 

with literature:82 m.p. 113-114 °C [lit.82 114-117 °C]; Rf = 0.38 (ethyl acetate); [α]25
D = +62.6 

(c = 1.8, CH2Cl2) [lit.
1 [α]25

D = +71 (c = 0.24, CH2Cl2)]; FT IR (NaCl) νmax 3383 (br), 3132 (br), 

3059, 3028, 2923, 2856, 1949 (w), 1886 (w), 1807 (w), 1668, 1611, 1578 cm-1; 1H NMR (270 

MHz, CDCl3) δ 7.91 (dd, J4 = 1.1 Hz, J3 = 7.9 Hz, 1H, Ar-H), 7.67 (dd, J4 = 1.7 Hz, J3 = 7.6 

Hz, 1H, Ar-H), 7.42 (dt, J4 = 1.1 Hz, J3 = 7.6 Hz, 1H, Ar-H), 7.37-7.29 (m, 10H, Ar-H), 7.13 

(dt, J4 = 1.7 Hz, J3 = 7.9 Hz, 1H, Ar-H), 4.92 (s, 2H, NCHPh) ppm; 13C NMR (68 MHz, 

CDCl3) δ 164.7, 142.9, 140.0, 136.9, 131.4, 130.7, 128.7, 128.3, 127.6, 127.0, 94.6, 75.5 

ppm; MS (CI+) 425 (M+H+); HRMS calcd for (M+H+) C21H18N2I 425.0515, found 425.0515. 

 

 

(4S,5S)-2-(2-Iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole (111S) 

 

 

 

Following the above procedure for the preparation of the chiral amidine 111R using (S,S)-

diamine  124S gave the corresponding (S,S) enantiomer 111S (793 mg, 77%) as white 

crystals: m.p.116-118 °C; [α]25
D = -60.9 (c = 2.5, CH2Cl2). The other spectral data is identical 

to that for its enantiomer. 
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(±)-1-Benzoyl-trans-4,5-dihydro-2,4,5-triphenylimidazole (169) 

 

 

 

Racemic trans-4,5-dihydro-2,4,5-triphenyl-1H-imidazole (116) (150 mg, 0.50 mmol), was 

stirred in deuterated chloroform (1.5 mL) with triethylamine (140 µL, 1.00 mmol) at RT under 

an inert atmosphere of nitrogen. Distilled benzoyl chloride (88 µL, 0.78 mmol) was added 

and the reaction mixture was stirred for 35 min after which time NMR analysis showed 100% 

conversion of starting material. The reaction mixture was diluted with dichloromethane 

(20 ml) and washed with 0.5M aqueous hydrochloric acid (20 mL). The aqueous phase was 

re-extracted with dichloromethane (20 mL) and the combined organic phases were washed 

with water (20 mL) and brine (20 mL), dried (MgSO4), filtered and concentrated in vacuo. 

The resulting residue was purified by flash column chromatography (0.5% methanol, 95.5% 

dichloromethane) to yield benzoylated amidine 169 (136 mg, 68%) as a white crystalline 

solid with spectral data consistent with literature:128 m.p. 173-176 °C [lit.128 179 °C]; Rf = 0.38 

(0.5% methanol, 95.5% dichloromethane); FT IR (NaCl) νmax 3064, 3017, 2967, 1957 (w), 

1898 (w), 1806 (w), 1710, 1669 cm-1; 1H NMR (270 MHz, CDCl3) δ 7.75 (d, J = 6.9 Hz, 2H, 

Ar-H), 7.42-7.08 (m, 18H, Ar-H), 5.15, 5.20 (ABq, JAB = 3.2 Hz, 2H, NCHPh) ppm; 13C NMR 

(75 MHz, CDCl3) δ 170.4 161.5, 142.0, 140.6, 134.7, 131.7, 131.2, 130.7, 129.3, 129.1, 

128.6, 128.6, 128.3, 128.2, 128.0, 126.4, 125.7, 78.2, 72.5 ppm; MS (CI+) 403 (M+H+); 

HRMS calcd for (M+H+) C28H22N2O 403.1810, found 403.1797. 

 

 

(4R,5R)-1-Benzoyl-2-(2-iodophenyl)-4,5-diphenyl-4,5-dihydroimidazole (241) 
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(4R,5R)-2-(2-Iodophenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazole (111) (97 mg, 0.24 mmol), 

was stirred in deuterated chloroform (1.0 mL) with triethylamine (66 µL, 0.47 mmol) at RT 

under an inert atmosphere of nitrogen. Distilled benzoyl chloride (41 µL, 0.35 mmol) was 

added and the reaction mixture was stirred for 50 min after which time NMR analysis 

showed 100% conversion of starting material. The reaction mixture was diluted with 

dichloromethane (20 mL), and washed with 0.5M aqueous hydrochloric acid (20 mL). The 

aqueous phase was then re-extracted with dichloromethane (20 mL) and the combined 

organic phases were washed with water (20 mL) and brine (20 mL), then dried (MgSO4), 

filtered and concentrated in vacuo. The resulting residue was purified by flash column 

chromatography (0.5% methanol, 95.5% dichloromethane) to yield (4R,5R)-1-benzoyl-2-(2-

iodophenyl)-4,5-diphenyl-4,5-dihydroimidazole (241) (86.5 mg, 70%) as an amorphous 

colourless solid: m.p. 67-71°C; Rf = 0.39 (0.5% methanol, 95.5% dichloromethane); [α]25
D = 

+83.1 (c = 2.0, CHCl3); FT IR (NaCl) νmax 3062, 3030, 1671, 1625 cm-1; 1H NMR (270 MHz, 

CDCl3) δ 7.62 (d, J = 7.9 Hz, 1H, Ar-H), 7.47-7.06 (m, 18H, Ar-H), 6.91 (t, J = 7.5 Hz, 1H, Ar-

H), 5.27, 5.27 (ABq, JAB = 7.8 Hz, 2H, NCH) ppm; 13C NMR (75 MHz, CDCl3) δ 169.0, 160.2, 

141.4, 140.8, 139.1, 137.5, 135.0, 131.2, 130.7, 129.0, 128.9, 128.3, 128.1, 127.9, 127.8, 

127.7, 127.1, 126.9, 96.4, 78.4, 72.7 ppm; MS (CI+) 529 (M+H+); HRMS calcd for (M+H+) 

C28H22N2OI 529.0777, found 529.0761. 

 

 

2-Iodoisophthalic acid (186) 

 

 

 

Potassium permanganate (13.6 g, 86.1 mmol) was added to a suspension of 2,6-

dimethyliodobenzene (185) (10.0 g, 43.1 mmol) in tert-butanol (40 mL) and water (40 mL). 

The suspension was heated at reflux for 1 h and then allowed to cool to RT. A further 

portion of potassium permanganate (13.6 g, 86.1 mmol) was added and the suspension was 

heated at reflux for a further 17 h. The reaction mixture was filtered whilst still warm, allowed 

to cool, concentrated to one half of its original volume, and acidified to pH 1 using 

concentrated hydrochloric acid. After leaving to cool the precipitate was filtered, washed with 

water, and dried in a dessicator over silica to yield the diacid 186 (6.0 g, 48 %) as a fine 
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colourless powder with spectral data consistent with literature:55 m.p. >230 °C [lit.138 244-246 

°C]; FT IR (NaCl) νmax 3703-3101 (br), 1699, 1679 cm-1; 1H NMR (300 MHz, DMSO-d6) 

δ 7.62-7.48 (m, 3H, Ar-H), 3.37 (br s, 2H, OH) ppm; 13C NMR (75 MHz, DMSO-d6) δ 169.8, 

141.7, 130.1, 128.8, 91.7 ppm; MS (CI+) 310 (M+NH4
+); HRMS calcd for (M+NH4

+) C8H9IO4N 

309.9576, found 309.9570. 

 

 

2-Iodo-1,3-benzenedicarbonyl chloride (187) 

 

 

 

Diacid 186 (307 mg, 1.1 mmol) was heated at reflux for 2.5 h in thionyl chloride (9 mL). The 

reaction mixture was allowed to cool and was concentrated in vacuo to yield 2-iodo-1,3-

benzenedicarbonyl chloride (187) (324 mg, 94%) as a beige crystalline solid with spectral 

data consistant with that previously reported:55 1H NMR (270 MHz, CDCl3) δ 7.88 (d, J = 7.8 

Hz, 2H, Ar-H), 7.62 (t, J = 7.8 Hz, 1H, Ar-H) ppm; 13C NMR (75 MHz, CDCl3) δ 167.8, 143.3, 

133.0, 128.8, 88.5 ppm. 

 

 

2-Iodoisophthalamide (122) 

 

 

 

Aqueous ammonia (35%, 50 mL) was added drop-wise over 1 h to a stirred suspension of 

diacyl chloride 187 (3.3 g, 9.9 mmol) in dichloromethane (50 mL) at 0 oC. The reaction 

mixture was allowed to slowly warm to RT and stirred for a further 15 h. The resulting white 

precipitate was filtered, washed with water (20 mL) and dried in vacuo over silica gel for 48 

h to yield diamide 122 (1.6 g, 64%) as a white powder with spectral data consistant with that 

previously reported:55 m.p. >230 °C; FT IR (NaCl) νmax 3294, 3131, 1657, 1611, 1580 cm-1; 
1H NMR (270 MHz, DMSO-d6) δ 7.83 (br s, 2H, NH), 7.54 (br s, 2H, NH), 7.41 (t, J = 7.5 Hz, 
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1H, Ar-H), 7.26 (d, J = 7.5 Hz, 2H, Ar-H) ppm; 13C NMR (68 MHz, DMSO-d6) δ 171.6, 145.4, 

128.4, 127.7, 91.7 ppm; MS (EI+.) 290 (M+.); HRMS calcd for (M+H+) C8H7N2O2I 289.9552, 

found 289.9553.  

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (IBAM) (113R); 

preparation from the diamide 

 

 

 

Dichloromethane (5 mL) was added to a mixture of diamide 122 (200 mg, 0.7 mmol) and 

trimethyloxonium tetrafluoroborate (285 mg, 1.9 mmol) and the resulting white suspension 

was refluxed under nitrogen for 48 h. The mixture was concentrated in vacuo and the 

residue was washed with dry ether (2 × 1.5 mL) to yield the crude imidate (379 mg, 

quantitative) as a grey-white solid. A portion of the crude imidate (348 mg, 0.6 mmol) was 

dissolved in dry ethanol (2 mL), and a solution of (+)-(1R,2R)-1,2-diphenylethylene diamine 

(124R) (300 mg, 1.4 mmol) in dry ethanol (3 mL) was transferred to the reaction flask via 

cannular. The reaction was left to stir at RT under nitrogen for 1.5 h, followed by a further 

4 h at reflux. The reaction mixture was allowed to cool to RT and concentrated in vacuo. The 

residue was partitioned between 5% aqueous sodium hydroxide solution (15 mL) and 

dichloromethane (20 mL) and the organic layer was separated. The aqueous layer was 

washed with dichloromethane (20 mL) and the combined organic layers were dried 

(MgSO4), filtered and concentrated in vacuo to give a pale green solid. This was purified by 

flash column chromatography (1:9, methanol/ethyl acetate) to give the product as a 

colourless oil. After trituration with petrol 113R (250 mg, 66%) was obtained as a colourless 

solid with spectral data consistant with that previously reported:55 m.p. 123-128 °C [lit.55 154-

156 °C]; Rf = 0.20 (1:9, methanol/ethyl acetate); [α]25
D = + 88.2 (c = 2.1, CH2Cl2) [lit.

55 [α]25
D 

= + 100.0 (c = 0.24 , CH2Cl2)]; FT IR (NaCl) νmax 3442, 3156, 3061, 3029, 2922, 1618 cm-1; 
1H NMR (270 MHz, CDCl3) δ 7.56-7.23 (m, 23H, Ar-H), 5.37 (s, 2H, NH), 4.69 (s, 4H, 

NCHPh) ppm; 13C NMR (68 MHz, CDCl3) δ 165.4, 142.3, 138.1, 131.1, 128.7, 127.7, 127.0, 
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95.5, 75.0 ppm; MS (FAB+) 645 (M+H+); HRMS calcd for (M+H+) C36H30N4I 645.1515, found 

645.1519. 

 

 

2,6-Di-[(4S,5S)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (S-IBAM) (113S) 

 

 

 

Following the above procedure for the preparation of the chiral diamidine 113R using (S,S)-

diamine 124S gave the corresponding (S,S) enantiomer 113S (191 mg, 68%) as white 

crystals with spectral data consistent with that previously reported:55 m.p.127-130 °C [lit.55  

152-153 °C]; [α]25
D = -97.7 (c = 4.8 , CH2Cl2) [lit.

55 [α]25
D = -103.8 (c = 0.24, CH2Cl2)]; The 

other spectral data is identical to that for its enantiomer. 

 

 

2,6-Dicyano-1-iodobenzene (192) 

 

 

 

A cooled (-20 ºC) solution of lithium diisopropylamide (LDA) (296 mL, 1.8 M in 

THF/heptane/ethylbenzene, 533 mmol) was added drop-wise over 30 min to a stirred 

solution of 1,3-dicyanobenzene (189) (65 g,  508 mmol) in 2-methyltetrahydrofuran (mTHF) 

(2.5 L) at -90 ºC under an inert atmosphere of nitrogen. After stirring for an additional 

15 mins, a cooled (-20 ºC) solution of iodine (135 g, 533 mmol) in mTHF (250 mL) was 

added over 100 min and the reaction mixture was allowed to slowly warm to RT. After 16 h, 

the resulting deep orange-red solution was quenched with 20% aqueous sodium sulphite 

solution (1 L) and biphasic mixture was transferred to a controlled laboratory reactor (CRL) 

and stirred to facilitate thorough mixing. The organic phase was separated, washed with 

water (1 L), brine (1 L) and divided into two portions. Each portion was filtered through a 
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500 mL silica plug and washed through with a further mTHF (2 × 350 mL). The portions 

were recombined along with the washings and concentrated to a volume of 400 mL to yield 

a brown slurry. After standing for 2 d the slurry was filtered and the residue washed with 

industrial methylated spirit (100 mL) and dried in a vacuum oven to yield 2,6-dicyano-1-

iodobenzene 192 (82 g, 64%) as a pale beige solid with spectral data consistent with 

literature:113 m.p. 205-209 °C; [lit.113 208-209 °C];  Rf = 0.32 (4:3, petrol/ethyl acetate); FT IR 

(NaCl) νmax 3090, 3060, 3054, 2230 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 

2H, Ar-H), 7.64 (t, J = 7.6 Hz, 1H, Ar-H) ppm; 13C NMR (100 MHz, CDCl3) δ 137.2, 129.1, 

123.3, 118.2, 103.7 ppm; MS (EI+) 254 (M+.); HRMS calcd for (M+.) C8H3IN2 253.9341, found 

253.9329. 

 

 

2-Iodoisophalaldehyde (199) 
 

 

 

A solution of iodonitrile 192 (10 g, 39.4 mmol) in dichloromethane (150 mL) was cooled to -

78 ºC under an inert atmosphere of nitrogen. A solution of DIBAL-H (80 mL, 1.5M in toluene) 

was added over a period of 10 min via a cooled (-10 ºC) dropping funnel. The reaction 

mixture was stirred with the temperature maintained between -70 ºC to -78 ºC for 2 h, after 

which time the temperature was allowed to gradually rise to 0 ºC. Over this time the reaction 

mixture changed from colourless to deep orange-red. After stirring for a further 3 h the 

reaction mixture was cooled to -10 ºC prior to the drop-wise addition of an ice-cold 3 M 

aqueous hydrochloric acid (150 mL). The resulting slurry was stirred at 0ºC for 1.5 h, after 

which time it was allowed to gradually warm to room temperature. After stirring at room 

temperature for a further 20 h, the biphasic mixture was separated and the aqueous phase 

was extracted with dichloromethane (150 mL). The combined organic phases were washed 

with water (150 mL), brine (150 mL), dried (MgSO4), filtered and concentrated in vacuo. The 

crude product was dissolved in a solution of ethyl acetate (75 mL), ethanol (22 mL) and 

water (9 mL) at 40 ºC under an inert atmosphere of nitrogen. Sodium bisulfite (5.94 g, 57.1 

mmol) was added and after stirring for 2 h the resulting precipitate was separated by 

filtration. The residue was washed with ethanol (15 mL), ethyl acetate (15 mL) and dried 

overnight in a vacuum oven (40 ºC) to yield the bis-bisulfite salt of dialdehyde 199 (16.0 g, 
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34.2 mmol) as a colourless powder: m.p. 335 ºC (decomp.); 1H NMR (400 MHz, CDCl3) δ 

7.59 (d, J = 7.6 Hz, 2H, Ar-H), 7.18 (t, J = 7.6 Hz, 1H, Ar-H), 6.04 (d, J = 5.6 Hz, 2H), 5.50 

(d, J = 5.6 Hz, 2H) ppm. The bisulfite salt (15.5 g, 33 mmol) was dissolved in water (260 mL) 

and the aqueous phase was overlain with ethyl acetate (260 mL). The biphasic mixture was 

stirred in an ice-bath and 10M aqueous sodium hydroxide solution (18 mL) was added. After 

stirring for 15 mins the organic phase was separated and the aqueous phase re-extracted 

with ethyl acetate (250 mL). The combined organic phases were washed with water 

(250 mL), brine (250 mL), dried (MgSO4), filtered and concentrated in vacuo to afford 

dialdehyde 199 (7.2 g, 70% over three steps) as pale yellow needles: m.p. 131-134 °C; Rf = 

0.30 (4:1, petrol/ethyl acetate); FT IR (NaCl) νmax 3051, 1679 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 10.2 (s, 2H, C(=O)H), 8.09 (d, J = 7.6 Hz, 2H, Ar-H), 7.56 (t, J = 7.6 Hz, 1H, Ar-H) 

ppm; 13C NMR (100 MHz, CDCl3) δ 195.0, 136.0, 135.7, 129.0, 106.2 ppm; MS (EI+) 260 

(M+.); HRMS calcd for (M+.) C8H5IO2 259.9334, found 259.9325; Anal. calcd for C8H5O2I: C, 

36.95; H, 1.94; found: C, 37.00; H, 1.87. 

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM) 

(113R); preparation from the dialdehyde 

 

 

 

(1R,2R)-(+)-1,2-Diphenylethylenediamine (124R) (20.1 g, 94.6 mmol) was added to a stirred 

solution of bis-aldehyde 199 (12 g, 46.2 mmol) at 0 °C in toluene (600 mL). The reaction 

vessel was flushed with nitrogen and left to stir at 0 °C. After 3 h the volatiles were removed 

in vacuo and the residue was taken up in dry dichloromethane (600 mL) under an inert 

atmosphere of nitrogen. The solution was cooled to 0°C, NBS (16.8 g, 94.6 mmol) added 

and the reaction mixture allowed to warm slowly to RT with stirring. After 16 h the reaction 

mixture was diluted with dichloromethane (500 mL), washed with a 10% aqueous solution of 

sodium hydroxide (600 mL), water (500 mL), brine (500 mL), dried (Na2SO4), filtered and 

concentrated in vacuo. The crude product was re-crystalised from hot ethanol (660 mL) to 

afford 2,6-di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene 113R (24.3 g, 
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82%) as a white powder with spectral data consistent with that previously reported:55 m.p. 

131-133 °C [lit.55 154-156 °C]; [α]26
D = + 90.0 (c = 0.96, CH2Cl2) [lit.

55 [α]25
D = + 100.0 (c = 

0.24 , CH2Cl2)]. All other data is identical to that reported above.  

 

 

1,3-Di-[(4S,5S)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]benzene (S-BAM) (121S) 

 

 

 

A solution of (1S,2S)-(-)-1,2-diphenylethylenediamine 124S (332 mg, 1.56 mmol) in 

dichloromethane (5 mL) at 0°C was added via cannular to a stirred solution of 

isophthaldehyde (100 mg, 14.9 mmol) in dichloromethane (5 mL) at 0°C under an inert 

atmosphere of nitrogen. After stirring at 0°C for 5 h, NBS was added and the reaction 

mixture was allowed to slowly warm to RT.  After 22 h, the reaction mixture was diluted with 

dichloromethane (20 mL), washed with a 10% solution of aqueous sodium hydroxide (20 

mL), water (20 mL), brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The 

crude product was purified by re-crystallisation from hot ethanol (2 mL) with water, added 

drop-wise until the solution clouded slightly. On cooling with slow stirring, a precipitate was 

observed and was isolated by filtration. The residue was washed with water/ ethanol (1:3) 

and dried in a vacuum oven to afford the pure 1,3-di-[(4S,5S)-4,5-diphenyl-4,5-dihydro-1H-

imidazol-2-yl]benzene (S-BAM, 121S) (251 mg, 65%) as a white powder: m.p. 129-135°C; 

Rf = 0.11 (dichloromethane, 4% methanol); [α]20
D = -16.1 (c = 2.05 , CH2Cl2); FT IR (NaCl) 

νmax 3400-3100 (br), 3060, 3028, 2903, 1950 (w), 1886 (w), 1807 (w), 1620, 1573  cm-1; 1H 

NMR (400 MHz, CDCl3) δ 8.50 (s, 1H, Ar-H), 8.09 (d, J = 7.2 Hz, 2H, Ar-H), 7.53 (t, 

J = 7.2 Hz, 1H, Ar-H), 7.36-7.26 (m, 20H, Ar-H), 4.90 (br s, 4H, NCH) ppm; 13C NMR (100 

MHz, CDCl3) δ 162.4, 143.2, 130.4, 129.9, 128.9, 128.7, 127.6, 126.6, 126.3, 77.2 ppm; MS 

(FAB+) 519 (M+H+); HRMS calcd for (M+H+) C36H31N4 519.2549, found 519.2554; Anal. 

calcd for C36H30N4: C, 83.37; H, 5.83; N, 10.80; found: C, 83.31; H, 5.78; N, 10.72. 

 

 

 



 216

2,6-Di-[(4R,5R)-1-acetyl-4,5-diphenyl-4,5-dihydroimidazol-2-yl]iodobenzene (244) 

 

 

 

Acetic anhydride (70 µL, 0.75 mmol) was added to a solution of 2,6-di-[(4R,5R)-4,5-

diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) (200 mg, 0.31 mmol), 

triethylamine (95 µL, 0.68 mmol) and DMAP (8 mg, 0.06 mmol) in THF (6 mL) stirred at 0°C 

under an inert atmosphere of nitrogen. The mixture was allowed to gradually warm to RT 

and stirred for 17 h. The reaction mixture was concentrated in vacuo and the resulting 

residue purified by flash column chromatography (2:1, ethyl acetate/petrol) to afford 244 as 

a colourless amorphous solid (218 mg, 96%): m.p. 135-140 °C; Rf = 0.36 (2:1, ethyl 

acetate/petrol); [α]20
D = + 80.0 (c = 1.15, CH2Cl2); FT IR (NaCl) νmax 3060, 3030, 2966, 1952 

(w), 1883 (w), 1812 (w), 1691, 1632 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.70-7.38 (m, 23H, 

Ar-H), 5.29 (br s, 4H, NCHPh), 1.87 (s, 6H, C(O)CH3) ppm; 13C NMR (100 MHz, CDCl3) δ 

168.0, 159.3, 141.7, 140.2, 130.5, 130.0, 129.3, 128.9, 128.7, 128.3, 128.0, 127.0, 98.5, 

78.4, 70.9, 24.8 ppm; MS (FAB+) 729 (M+H+); HRMS calcd for (M+H+) C40H34N4O2I 

729.1727, found 729.1726; Anal. calcd for C40H33N4O2I; C, 65.94; H, 4.57; N, 7.69; found: C, 

65.86; H, 4.48; N, 7.62. 

 

 

2,6-Di-[(4R,5R)-1-(2-oxo-butan-1-yl)-4,5-diphenyl-4,5-dihydroimidazol-2-

yl]iodobenzene (249) 

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) 

(200 mg, 0.31 mmol) was stirred with triethylamine (95 µL, 0.68 mmol) in dichloromethane 

(6 mL) at 0 °C under an inert atmosphere of nitrogen. 1-bromo-2-butanone (70 µL, 
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0.68 mmol) was added via syringe and the solution was allowed to slowly warm to RT. After 

24 h the reaction mixture was diluted with dichloromethane (25 mL), washed with saturated 

aqueous sodium hydrogen carbonate solution (25 mL), water (25 mL), brine (25 mL), dried 

(Na2SO4), filtered and concentrated in vacuo to afford an orange solid. The crude product 

was purified by flash column chromatography (1:1, dichloromethane/ethyl acetate) to yield 

249 (44 mg, 18%) as a colourless amorphous solid: m.p. 91-94°C; Rf = 0.30 (1:1, 

dichloromethane/ethyl acetate); [α]20
D = + 57.6 (c = 0.92, CH2Cl2); FT IR (NaCl) νmax 3060, 

3028, 2959, 2925, 2854, 1953 (w), 1885 (w), 1809 (w), 1723, 1616 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.59 (d, J = 7.2 Hz, 2H, Ar-H), 7.49-7.30 (m, 21H, Ar-H), 5.09 (d, J = 10.8 Hz, 2H, 

NCHPh), 4.79 (d, J = 10.8 Hz, 2H, NCHPh), 3.72 (d, J2 = 19.2 Hz, 2H, NCHH’C(=O)), 3.63 

(d, J2 = 19.2 Hz, 2H, NCHH’C(=O)), 2.06 (q, J = 7.2 Hz, 4H, C(=O)CH2CH3), 0.90 (t, J = 7.2 

Hz, 6H, C(=O)CH2CH3) ppm; 13C NMR (100 MHz, CDCl3) δ 207.5, 166.0, 143.2, 140.7, 

138.1, 132.3, 129.0, 128.6, 128.4, 128.1, 127.8, 127.6, 127.3, 96.3, 79.3, 74.7, 52.8, 32.9, 

7.3 ppm; MS (FAB+) 785 (M+H+); HRMS calcd for (M+H+) C44H42N4O2I 785.2353, found 

785.2341. 

 

 

2,6-Di-[(4R,5R)-1,3-di-(2-oxo-butan-1-yl)-4,5-diphenyl-4,5-dihydroimidazolium-2-

yl]iodobenzene dibromide (250) 

 

N

NN

N
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Ph

Ph
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O O

O O

BrBr

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) 

(200 mg, 0.31 mmol) was stirred with triethylamine (173 µL, 1.24 mmol) in dichloromethane 

(6 mL) at 0 °C under an inert atmosphere of nitrogen. 1-Bromo-2-butanone (127 µL, 1.24 

mmol) was added via syringe and the solution was allowed to slowly warm to RT. After 44 h 

the reaction mixture was diluted with dichloromethane (25 mL), washed with saturated 

aqueous sodium hydrogen carbonate solution (25 mL), water (25 mL), brine (25 mL), dried 
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(Na2SO4), filtered and concentrated in vacuo to afford an orange solid. The crude product 

was purified by flash column chromatography (1:1, dichloromethane/ethyl acetate→ 92:8 

dichloromethane/methanol) to yield 250 (99 mg, 29%) as a colourless amorphous solid: m.p. 

175-185°C (decomp.); Rf = 0.08 (92:8, dichloromethane/methanol); [α]20
D = + 254.1 (c = 1.5, 

CH2Cl2); FT IR (NaCl) νmax 3388 (br), 3060, 3036, 2976, 2937, 2905, 1968 (w), 1898 (w), 

1816 (w), 1723, 1579 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.92 (t, J = 7.9 Hz, 1H, Ar-H),  7.72 

(d, J = 7.9 Hz, 2H, Ar-H), 7.55-7.28 (m, 20H, Ar-H), 5.89 (d, J2 = 18.8 Hz, 2H, NCHH’C(=O)), 

5.88 (d, J2 = 18.8 Hz, 2H, NCHH’C(=O)), 5.55 (d, J = 9.8 Hz, 2H, NCHPh), 5.17 (d, J = 9.8 

Hz, 2H, NCHPh), 4.18 (d, J2 = 18.8 Hz, 2H, NCHH’C(=O)), 3.86 (d, J2 = 18.8 Hz, 2H, 

NCHH’C(=O)), 3.11 (dq, J2 = 18.8 Hz, J3 = 7.2 Hz, 2H, C(=O)CHH’CH3), 2.73 (dq, J2 = 18.0 

Hz, J3 = 7.2 Hz, 2H, C(=O)CHH’CH3), 2.35-2.22 (m, 4H, 2 x C(=O)CHH’CH3), 0.99 (t, J = 7.2 

Hz, 6H, C(O)CH2CH3), 0.86 (t, J = 7.2 Hz, 6H, C(O)CH2CH3) ppm; 13C NMR (100 MHz, 

CDCl3) δ 205.8, 205.2, 167.0, 135.3, 134.5, 134.0, 132.4, 130.8, 130.6, 130.0, 129.7, 128.5, 

128.4, 94.2, 73.2, 72.8, 54.8, 54.6, 34.3, 34.2, 7.3, 7.2 ppm; MS (FAB+) 925 (dication-H+); 

HRMS calcd for (dication-H+) C52H54N4O4I 925.3190, found 925.3155; Anal. calcd for 

C52H55N4O4I: C, 57.47; H, 5.10; N, 5.16; found: C, 57.49; H, 5.04; N, 5.12. 

 

 

2,6-Di-[(4R,5R)-1-(3-oxo-butan-1-yl)-4,5-diphenyl-4,5-dihydroimidazol-2-

yl]iodobenzene (252) 

 

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) 

(200 mg, 0.31 mmol), 1-buten-3-one (83 µL, 0.99 mmol) and sodium acetate (25 mg, 0.31 

mmol) were heated at 85 °C in dioxane (2 mL) under an inert atmosphere of nitrogen. After 

24 h the reaction mixture was concentrated in vacuo and the resulting residue was 

partitioned between dichloromethane (25 mL) and water (25 mL). The organic layer was 

separated and the aqueous layer extracted with a further portion of dichloromethane (25 

mL). The organic layers were combined, washed with brine (25 mL), dried (MgSO4), filtered 
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and concentrated in vacuo. The crude product was purified by flash column chromatography 

(ethyl acetate, 4% methanol, 0.5% triethylamine) to yield 252 (161 mg, 66%) as a colourless 

amorphous solid: m.p. 91-95 °C; Rf = 0.24 (ethyl acetate, 4% methanol, 0.5% triethylamine); 

[α]20
D = + 21.2 (c = 0.99, CH2Cl2); FT IR (NaCl) νmax 3061, 3029, 2964, 2921, 2859, 1954 

(w), 1885 (w), 1812 (w), 1712, 1612 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.69-7.30 (m, 23H, 

Ar-H), 5.17-5.11 (m, 2H, NCHPh), 4.55-4.49 (m, 2H, NCHPh), 3.40-3.24 (m, 4H, NCH2CH2), 

2.38-2.29 (m, 4H, NCH2CH2C(O)), 1.86-1.76 (m, 6H, C(O)CH3) ppm; 13C NMR (100 MHz, 

CDCl3) δ 206.2, 206.0, 166.6, 165.9, 143.5, 142.1, 141.4, 138.9, 131.8, 131.0, 129.0, 128.7, 

128.6, 128.5, 128.1, 128.0, 127.4, 127.3, 126.8, 99.2, 97.5, 79.7, 78.9, 75.8, 74.5, 42.0, 

41.5, 41.1, 40.4, 30.0 ppm; MS (ES+) 785 (M+H+); HRMS calcd for (M+H+) C44H42N4O2I 

785.2353, found 785.2319. 

 

 

2,6-Di-[(4R,5R)-1-(benzoyl)-4,5-diphenyl-4,5-dihydroimidazol-2-yl]iodobenzene (242) 

 

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) 

(200 mg, 0.31 mmol) was stirred with triethylamine (108 µL, 0.78 mmol) and DMAP (8 mg, 

0.06 mmol) in dichloromethane (4 mL) under an inert atmosphere of nitrogen. Benzoyl 

chloride (90 µL, 0.78 mmol) was added via syringe and the reaction mixture was stirred at 

RT for 18 h. The reaction mixture was diluted with dichloromethane (20 mL) and washed 

with 0.5 M aqueous hydrochloric acid (20 mL). The aqueous phase was re-extracted with a 

further portion of dichloromethane (20 mL) and the combined organic phases were washed 

with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), dried 

(MgSO4), filtered and concentrated in vacuo to afford a colourless foam. The crude product 

was purified by flash column chromatography (2:1, ethyl acetate/petrol) to yield 242 (250 

mg, 94%) as a colourless amorphous solid: m.p. 137-141 °C; Rf = 0.50 (2:1, ethyl 

acetate/petrol); [α]20
D = + 20.0 (c = 1.6, CH2Cl2); FT IR (NaCl) νmax 3060, 3030, 2979, 2901, 

1953, 1886, 1809, 1668, 1631 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.45-7.07 (m, 29H, Ar-H), 

7.09 (t, J = 7.6 Hz, 4H, Ar-H), 5.35 (d, J = 8.0 Hz, 2H, NCHPh), 5.31 (d, J = 8.0 Hz, 2H, 
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NCHPh) ppm; 13C NMR (100 MHz, CDCl3) δ 170.0, 159.9, 141.6, 140.6, 138.7, 134.8, 131.4, 

130.9, 129.0, 128.8, 128.2, 128.0, 127.9, 127.0, 126.8, 98.5, 78.5, 72.7 ppm; MS (ES+) 853 

(M+H+); HRMS calcd for (M+H+) C50H38N4O2I 853.2040, found 853.2059; Anal. calcd for 

C50H37N4O2I: C, 70.42; H, 4.37; N, 6.57; found: C, 70.39; H, 4.28; N, 6.48. 

 

 

2,6-Di-[(4S,5S)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-dihydroimidazol-2-

yl]iodobenzene (245) 

 

 

 

2,6-Di-[(4S,5S)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (S-IBAM, 113S) (105 

mg, 0.16 mmol), (R)-(–)-α-acetoxyphenyl acetic acid (173) (76 mg, 0.39 mmol) and DMAP 

(5 mg, 0.04 mmol) were stirred in dichloromethane (4 mL) at 0°C under an inert atmosphere 

of nitrogen. DCC (81 mg, 0.39 mmol) was added and the solution was allowed to slowly 

warm to RT with stirring. After 20 h the reaction mixture was filtered, the residue washed 

with ethyl acetate (5 mL) and the combined filtrate and washings were concentrated in 

vacuo. The resulting crude product was purified by flash column chromatography (1:1, ethyl 

acetate/petrol), followed by re-crystallisation from ethyl acetate/diisopropyl ether to yield 245 

(42 mg, 26%) as colourless cubic crystals: m.p. 125-135 °C; Rf = 0.16 (1:1, ethyl 

acetate/petrol); [α]22
D = + 136.2 (c = 1.8, CH2Cl2); FT IR (NaCl) νmax 3062, 3034, 1959(w), 

1883(w), 1745, 1708, 1638 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.47-7.13 (m, 33H, Ar-H), 

5.64 (br s, 2H, NC(=O)CH), 5.15 (br s, 4H, NCHPh), 1.98 (s, 6H, CO2CH3) ppm; 13C NMR 

(100 MHz, CDCl3) δ 170.0, 165.2, 158.6, 140.7, 140.3, 139.5, 131.9, 129.8, 129.6, 129.3, 

129.1, 128.7, 127.8, 126.8, 126.3, 97.7, 80.0, 74.7, 68.3, 20.5 ppm; MS (FAB+) 997 (M+H+); 

HRMS calcd for (M+H+) C56H46N4O6I 997.2462, found 997.2461; Anal. calcd for C56H45N4O6I: 

C, 67.47; H, 4.55; N, 5.62; found: C, 67.40; H, 4.49; N, 5.62; Crystal data for 245: 

C56H45IN4O6, M = 996.86, monoclinic, P2 (no. 3), a = 10.1088(17), b = 8.9540(15), c = 

13.6000(8) Å, β = 90.045(8)°, V = 1231.0(3) Å3, Z = 1 (C2 symmetry), Dc = 1.345 g cm–3, 

µ(Mo-Kα) = 0.705 mm–1, T = 173 K, colourless blocks, Oxford Diffraction Xcalibur 3 
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diffractometer; 7620 independent measured reflections, F2 refinement, R1 = 0.022, wR2 = 

0.056, 7199 independent observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 

64°], 306 parameters. The absolute structure of 245 was determined by a combination of R-

factor tests [R1
+ = 0.0223, R1

– = 0.0389] and by use of the Flack parameter [x+ = +0.000(7), 

x– = +1.003(7)]. 

 

 

2-[(4R,5R)-1-acetyl-4,5-diphenyl-4,5-dihydroimidazol-2-yl]-6-[(4R,5R)-4,5-diphenyl-4,5-

dihydro-1H-imidazol-2-yl]-iodobenzene (243) 

 

 

 

Acetic anhydride (64 µL, 0.68 mmol) was added to a solution of 2,6-di-[(4R,5R)-4,5-

diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) (400 mg, 0.62 mmol), 

triethylamine (85 µL, 0.62 mmol) and DMAP (8 mg, 0.06 mmol) in THF (10 mL) stirred at 

0 °C under an inert atmosphere of nitrogen. The mixture was allowed to gradually warm to 

RT and, after stirring for 23 h, TLC analysis (ethyl acetate) indicated the formation of two 

new products (Rf = 0.36 and Rf = 0.59) which were identified as the mono- and bis- 

acetylated products respectively. The reaction mixture was concentrated in vacuo and the 

resulting residue purified by flash column chromatography (2:1, ethyl acetate/petrol→ethyl 

acetate) to afford the mono-acetylated product 243 as a colourless amorphous solid (169 

mg, 40%): m.p. 129-135 °C; Rf = 0.36 (ethyl acetate); [α]20
D = + 72.3 (c = 1.3, CH2Cl2); FT IR 

(NaCl) νmax 3391(br), 3061, 3029, 2924, 1951 (w), 1885 (w), 1808 (w), 1687, 1629 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 7.76-7.73 (m, 1H, Ar-H), 7.60-7.59 (m, 2H, Ar-H), 7.50-7.34 (m, 

20H, Ar-H), 5.57 (br s, 1H, NH), 5.31 (br s, 1H, NCHPh), 5.24 (br s, 1H, NCHPh),  4.99 (br s, 

2H, NCHPh), 1.81 (s, 3H, C(=O)CH3) ppm; 13C NMR (100 MHz, CDCl3) δ 168.0, 164.8, 

159.8, 143.0, 142.0, 141.5, 140.6, 139.0, 131.3, 130.6, 129.6, 129.1, 128.9, 128.5, 128.2, 

127.8, 127.3, 126.2, 97.1, 78.6, 71.5, 70.7, 25.0 ppm; MS (ES+) 687 (M+H+); HRMS calcd 

for (M+H+) C38H32N4OI 687.1621, found 687.1611; Anal. calcd for C38H31N4OI: C, 66.48; H, 

4.55; N, 8.16; found: C, 66.72; H, 4.62; N, 8.03. 

. 
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2-[(4R,5R)-1-{(R)-α-Acetoxyphenyl acetyl}-4,5-diphenyl-4,5-dihydroimidazol-2-yl]-6-

[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]-iodobenzene (247) 

 

 

 

2,6-Di-[(4R,5R)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl]iodobenzene (R-IBAM, 113R) 

(250 mg, 0.39 mmol), (R)-(–)-α-acetoxyphenyl acetic acid (173) (158 mg, 0.82 mmol) and 

DMAP (9 mg, 0.08 mmol) were stirred in dichloromethane (10 mL) at 0 °C under an inert 

atmosphere of nitrogen. DCC (160 mg, 0.78 mmol) was added and the solution was allowed 

to slowly warm to RT with stirring. After 3 d the reaction mixture was filtered, the residue 

washed with ethyl acetate (10 mL) and the combined filtrate and washings were 

concentrated in vacuo. The resulting crude product was purified by flash column 

chromatography (1:2→2:3→1:1→1:0, ethyl acetate/petrol) to afford 247 (139 mg, 44%) as a 

colourless amorphous solid: m.p. 126-130 °C; Rf = 0.46 (ethyl acetate); [α]23
D = + 2.2 (c = 

0.89, CH2Cl2); FT IR (NaCl) νmax 3379 (br), 3167, 3061, 3031, 2965, 2930, 1953(w), 

1884(w), 1810(w), 1737, 1701, 1636, 1575 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 

7.6 Hz, 1H, Ar-H),  7.54-7.13 (m, 25H, Ar-H), 6.74 (br d, J = 6.4 Hz, 2H, Ar-H), 5.74 (s, 1H, 

NC(=O)CH), 5.66 (br s, 1H, C(=O)NCHPh), 5.25 (br s, 1H, NCHPh), 4.98 (br s, 2H, 

NCHPh), 2.05 (s, 3H, CO2CH3) ppm; 13C NMR (125 MHz, CDCl3) δ 171.0, 167.0, 165.0, 

159.4, 142.6, 141.6, 140.7, 138.7, 132.4, 131.9, 131.0, 129.4, 129.2, 128.9, 128.8, 128.6, 

128.5, 128.4, 128.3, 128.1, 127.5, 127.0, 126.3, 96.3, 80.3, 74.3, 70.4, 68.1, 20.5 ppm; MS 

(ES+) 821 (M+H+); HRMS calcd for (M+H+) C46H38N4O3I 821.1989, found 821.1964; Anal. 

calcd for C46H37N4O3I: C, 67.32; H, 4.54; N, 6.83; found: C, 67.35; H, 4.40; N, 6.79. 

 

 

2,6-Di[N-(1’R)-(1’-benzyl-2’-hydroxyethyl)amino]iodobenzene (255) 
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Diacyl chloride 187 (277 mg, 0.84 mmol) was dissolved in distilled dichloromethane (3 mL) 

and the solution was cooled to -40 °C under an inert atmosphere of nitrogen. In a separate 

flask (S)-phenyl alaninol (280 mg, 1.85 mmol) and triethylamine (351 µL, 2.53 mmol) were 

stirred in distilled dichloromethane (5 mL) at -40 °C under nitrogen. The diacyl chloride 

solution was then transferred to the reaction flask by cannular under nitrogen, and the 

reaction mixture was allowed to slowly warm to RT. After 16 h, the reaction mixture was 

cooled to -20 °C in order to maximise precipitation of the solid product. The precipitate was 

filtered, washed with water (8 mL), ethanol (8 mL) and dried in a dessicator over silica to 

yield diamide 255 (240 mg, 51%) as a white crystalline solid: m.p. 185-189 °C; Rf = 0.09 

(1:99, methanol/ethyl acetate); [α]D = -35.8 (c = 1.1, 1:9, MeOH:CHCl3); FT IR (NaCl, nujol®) 

νmax 3265 (br), 1941 (w), 1875 (w), 1803 (w), 1742 (w), 1649 cm-1; 1H NMR (270 MHz, 

CDCl3) δ 8.27 (d, J = 8.5 Hz, 2H, NH), 7.49-7.19 (m, 11H, ArH), 6.97 (d, J = 7.4 Hz, 2H, ArH) 

4.84 (br s, 2H, OH), 4.06 (br m, 2H, CH), 3.56 (m, 2H, 2 × CHH’OH), 3.35 (m, 2H, 2 

×CHH’OH), 2.98 (dd, J2 = 13.6 Hz, J3 = 4.5 Hz,  2H, 2 ×CHH’Ph), 2.69 (dd, J2 = 13.6 Hz, 

J3 = 9.1 Hz,  2H, 2 ×CHH’Ph) ppm; 13C NMR (68 MHz, CDCl3) δ 169.2, 145.1, 139.8, 129.8, 

129.7, 128.7, 127.8, 126.5, 92.4, 63.3, 53.3, 36.8 ppm; MS (CI+) 576 (M+NH4
+), 559 (M+H+). 

 

 

2,6-Di[(4’R)-4’-benzyloxazolin-2’-yl]iodobenzene (257) 

 

 

 

A solution of diamide 255 (200 mg, 0.35 mmol) and triethylamine (237 µL, 1.70 mmol) in 

DMF (2 mL) and dichloromethane (5 mL) was stirred at 0 °C under an inert atmosphere of 

nitrogen. Mesyl chloride (90 mg, 0.78 mmol) was added via syringe, and the solution was 

stirred for 24 h. The reaction mixture was diluted with dichloromethane (20 mL) and poured 

into water (20 mL). The organic layer was separated and the aqueous layer was re-

extracted with dichloromethane (20 mL). The combined organic extracts were washed with 

brine (20 mL), dried (MgSO4), filtered and concentrated in vacuo. The crude mesylate was 

taken straight on to the oxazoline; the residue was dissolved in ethanol (4 mL) and to this a 

solution of sodium hydroxide (100 mg) in water (4 mL) was added. The reaction mixture was 
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heated at reflux for 2.5 h, after which time the ethanol was evaporated in vacuo and the 

remaining suspension was extracted with dichloromethane (20 mL). The organic layer was 

washed with 0.5M aqueous hydrochloric acid (20 mL) and the aqueous layer was re-

extracted with dichloromethane (20 mL). The combined organic layers were washed with 

saturated aqueous sodium hydrogen carbonate (20 mL), water (20 mL), brine (20 mL), dried 

(MgSO4), filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography (1:6, petrol/ethyl acetate) to yield bis-oxazoline 257 (53 mg, 28%) 

as an amorphous colourless solid: Rf = 0.36 (1:6, petrol/ethyl acetate); 1H NMR (300 MHz, 

CDCl3) δ 7.54-7.20 (m, 13H, ArH), 4.66 (quintet, J = 7.6 Hz, 2H, NCH), 4.44 (t, J = 8.9 Hz, 

2H, 2 × OCHH’), 4.24 (t, J = 7.9 Hz, 2H, 2 × OCHH’), 3.27 (dd, J2 = 13.8 Hz, J3 = 5.4 Hz,  

2H, 2 ×CHH’Ph), 2.87 (dd, J2 = 13.8 Hz, J3 = 8.2 Hz,  2H, 2 ×CHH’Ph) ppm; 13C NMR 

(75 MHz, CDCl3) δ 165.1, 137.7, 136.4, 131.7, 129.4, 128.6, 127.9, 126.6, 96.0, 72.3, 68.2, 

41.5 ppm; MS (CI+) 523 (M+H+); HRMS calcd for (M+H+) C26H24N2O2I 523.0883, found 

523.0883. 

 

 

6.4. Substrate Synthesis 

 

(S)-2-Allyloxypropionic Acid Ethyl Ester (219S)139 

 

 

 

To a solution of (S)-ethyl lactate (218S) (4.9 mL, 42 mmol) in diethyl ether (100 mL) was 

added silver oxide (19.6 g, 85 mmol) and allyl bromide (7.7 mL, 89 mmol). The mixture was 

stirred for 4 days under an inert atmosphere of nitrogen, at RT, in the dark, until TLC (1:1, 

petrol/ethyl acetate) indicated the full consumption of the starting material (Rf = 0.40). The 

solids were filtered off through Celite® and washed with a further portion of diethyl ether (100 

mL). The combined filtrates were concentrated in vacuo to afford the crude product. This 

was purified by flash column chromatography (6:1, petrol/diethyl ether) to afford the pure 

(S)-2-allyloxypropionic acid ethyl ester (219S) (4.4 g, 66%) as a colourless oil with spectral 

data consistent with literature:139 Rf = 0.28 (6:1, petrol/diethyl ether); [α]25
D = -71.5 (c = 3.83 , 

EtOH) [lit.117 [α]23
D = -73.6 (EtOH)]; FT IR (NaCl) νmax 3082, 2983, 2937, 1747 cm-1; 1H NMR 
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(400 MHz, CDCl3) δ 5.93 (ddt, J3
trans = 17.2 Hz, J3

cis = 10.4 Hz, J3 = 5.8 Hz, 1H, CH2=CH), 

5.29 (d, J3
trans = 17.2 Hz, 1H, CHtransHcis=CH), 5.20 (d, J3

cis = 10.4 Hz, 1H, CHtransHcis=CH), 

4.22 (m, 2H, OCH2CH3), 4.15 (dd, J2 = 12.4 Hz, J3 = 5.6 Hz, CH2=CHCHH’), 4.01 (q, J3 = 6.8 

Hz, 1H, OCH(CH3)CO2), 3.95 (dd, J2 = 12.4 Hz, J3 = 6.0 Hz, 1H, CH2=CHCHH’), 1.42 (d, 

J3 = 6.8 Hz, 3H, OCH(CH3)CO2), 1.29 (t, J3 = 7.2 Hz, 3H, OCH2CH3) ppm; 13C NMR (100 

MHz, CDCl3) δ 173.4, 133.8, 117.4, 73.7, 70.7, 60.5, 18.3, 13.9 ppm; MS (CI+) 176 

(M+NH4
+); HRMS calcd for (M+NH4

+) C8H18NO3 176.1287, found 176.1293. 

 

(S)-2-Allyloxypropionic acid (217S) (200 mg, 1.54 mmol), ethanol (108 µL, 1.85 mmol) and 

DMAP (38 mg, 0.31 mmol) were stirred in dichloromethane (15 mL) at 0°C under an inert 

atmosphere of nitrogen. DCC (381 mg, 1.85 mmol) was added and the solution was allowed 

to slowly warm to RT with stirring. After 18 h the reaction mixture was filtered, the residue 

washed with ethyl acetate (5 mL) and the combined filtrate and washings were concentrated 

in vacuo. The resulting crude product was purified by flash column chromatography (6:1, 

petrol/diethyl ether) to afford pure (S)-2-allyloxypropionic acid ethyl ester (219S) (171 mg, 

65%) as a colourless oil: [α]24
D = -74.4 (c = 0.86 , EtOH) [lit.117 [α]23

D = -73.6 (EtOH)]; all 

other data identical to that previously reported. 

 

 

(R)-2-Allyloxypropionic Acid Ethyl Ester (219R)139 

 

 

 

To a solution of (R)-ethyl lactate (128R) (3.8 mL, 33 mmol) in diethyl ether (80 mL) was 

added silver oxide (15.2 g, 66 mmol) and allyl bromide (5.6 mL, 66 mmol). The mixture was 

stirred for 3 days under an inert atmosphere of nitrogen, at RT, in the dark, until TLC (1:1, 

petrol/ethyl acetate) indicated the full consumption of the starting material (Rf = 0.40). The 

solids were filtered off through Harbourlite® and washed with a further portion of ether (100 

mL). The combined filtrates were concentrated in vacuo to afford the crude product. This 

was purified by flash column chromatography (6:1, petrol/diethyl ether) to afford the pure 

(R)-2-allyloxypropionic acid ethyl ester (219R) (4.1 g, 97%) as a colourless oil: [α]27
D = +76.5 

(c = 2.7, EtOH). The other spectral data is identical to that for its enantiomer. 
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(S)-2-Allyloxypropionic Acid (217S) 

 

 

 

A solution of ester 219S (200 mg, 1.27 mmol), lithium hydroxide monohydrate (266 mg, 6.33 

mmol), methanol (15 mL) and water (3 mL) was stirred at RT for 18 h. The reaction mixture 

was partitioned between water (40 mL) and diethyl ether (40 mL). The aqueous layer was 

separated, acidified to pH1 with 2M aqueous hydrochloric acid and extracted with ethyl 

acetate (3 × 40 mL). The combined organic extracts were washed with brine (40 mL), dried 

(MgSO4), filtered and concentrated in vacuo to afford (S)-2-allyloxypropionic acid (217S) 

(169 mg, quantitative) as a pale yellow oil: Rf = 0.28 (1:1, petrol/diethyl ether); [α]24
D = -13.9 

(c = 1.44 , CH2Cl2); FT IR (NaCl) νmax 3600-2300 (br), 2984, 1726 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 5.84 (ddt, J3
trans = 17.2 Hz, J3

cis = 10.0 Hz, J3 = 5.6 Hz, 1H, CH2=CH), 5.32 (d, 

J3
trans = 17.2 Hz, 1H, CHtransHcis=CH), 5.23 (d, J3

cis = 10.0 Hz, 1H, CHtransHcis=CH), 4.18 (dd, 

J2 = 12.4 Hz, J3 = 5.6 Hz, CH2=CHCHH’), 4.08 (q, J3 = 6.8 Hz, 1H, OCH(CH3)CO2H), 4.01 

(dd, J2 = 12.4 Hz, J3 = 6.0 Hz, 1H, CH2=CHCHH’), 1.48 (d, J3 = 6.8 Hz, 3H, 

OCH(CH3)CO2H) ppm; 13C NMR (100 MHz, CDCl3) δ 178.8, 133.7, 118.2, 73.4, 71.2, 18.4 

ppm; MS (CI+) 148 (M+NH4
+); HRMS calcd for (M+NH4

+) C6H14NO3 148.0974, found 

148.0975. 

 

 

(R)-2-Allyloxypropionic Acid (217R) 

 

 

 

A solution of ester 219R (2.0 g, 12.7 mmol), lithium hydroxide monohydrate (2.6 g, 63.3 

mmol), methanol (150 mL) and water (30 mL) was stirred at RT for 20 h. The reaction 

mixture was partitioned between water (400 mL) and diethyl ether (400 mL). The aqueous 

layer was separated, acidified to pH1 with a 2M aqueous solution of hydrochloric acid and 

extracted with ethyl acetate (3 × 300 mL). The combined organic extracts were washed with 

brine (200 mL), dried (MgSO4), filtered and concentrated in vacuo to afford (R)-2-
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allyloxypropionic acid (217R) (1.6 g, 98%) as a pale colourless oil: [α]27
D = +8.0 (c = 1.7, 

CH2Cl2). The other spectral data is identical to that for its enantiomer. 

  

 

6.5. Catalytic Electrophilic Bromination of Alkenes 

 

A General Procedure for NBS/Amidine-Catalyst Bromolactonisation140 

 

NBS (1 eq.) was added to a stirred solution of substrate (1 eq.) and (±)-iso-amarine 116 

(0.01 eq.) in dichloromethane or deuterated chloroform (0.25M) at RT. The reaction mixture 

was stirred for 1-2 h, quenched with 20% aqueous sodium sulphite solution, and extracted 

with dichloromethane. The organic layer was washed with water, brine, dried (MgSO4), 

filtered and concentrated in vacuo.  

 

Bromolactones 

 

(±)-5-Bromomethyl-γ-butyrolactone (106) 

 

 

 

Starting from 4-pentenoic acid (61b) (100 µL, 1.0 mmol) and following the general procedure 

afforded the crude bromolactone. The crude product was purified by flash column 

chromatography (1:2, petrol/diethyl ether) to yield 5-bromomethyl-γ-butyrolactone (106) (161 

mg, 90%) as a colourless oil with spectral data consistant with that previously reported55: Rf 

= 0.27 (1:2, petrol/diethyl ether); FT IR (NaCl) νmax 2962, 1776 cm-1; 1H NMR (270 MHz, 

CDCl3) δ 4.71 (m, 1H, OCH), 3.51 (d, J = 5.3 Hz, 2H, CH2Br), 2.69-2.33 (m, 3H, CH2CHH’), 

2.14-2.00 (m, 1H, CHH’) ppm; 13C NMR (68 MHz, CDCl3) δ 176.3, 77.9, 34.3, 28.5, 26.2 

ppm; MS (CI+) 196/198 (M+NH4
+); HRMS calcd for (M+NH4

+) C5H11NO2
79Br 197.9953 and 

C5H11NO2
81Br 195.9973, found 197.9950 and 195.9971; HPLC (3:7, ethanol/hexane); 

Chiralpak AD: 0.5 mL/min; 225 nm, tR(R) 17.12 min, tR(S) 19.74 min. 
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(±)-5-Bromomethyl-5-phenyldihydrofuran-2-one (222) 

 

 

 

Starting from 4-phenylpent-4-enoic acid (216) (176 mg, 1.0 mmol) and following the general 

procedure afforded the crude bromolactone. The crude product was purified by flash column 

chromatography (2:3, petrol/dichloromethane) to yield (±)-5-bromomethyl-5-

phenyldihydrofuran-2-one (222) (219 mg, 86%) as a colourless oil with spectral data 

consistant with that previously reported:55 Rf = 0.33 (2:3, petrol/dichloromethane); FT IR 

(NaCl) νmax 3060, 3028, 2961, 1959 (w), 1788 cm-1; 1H NMR (270 MHz, CDCl3) δ 7.40-7.34 

(m, 5H, ArH), 3.73, 3.67 (ABq, JAB = 11.3 Hz, 2H, 2 × H2CBr), 2.85-2.73 (m, 2H, CH2), 2.60-

2.44 (m, 2H, CH2) ppm; 13C NMR (68 MHz, CDCl3) δ 175.6, 140.8, 128.9, 128.8, 125.0, 86.5, 

41.1, 32.5, 29.1 ppm; MS (CI+) 272/274 (M+NH4
+); HRMS calcd for (M+NH4

+) C11H15NO2
79Br 

274.0266 and C11H15NO2
81Br 272.0286, found 274.0263 and 272.0279; HPLC (1:9, 

ethanol/hexane); Chiralpak AD: 0.5 mL/min; 225 nm, tR 32.59 and 35.31 min, the absolute 

configuration was not determined. 

 

 

(±)-6-Bromohexahydrocyclopenta[b]furan-2-one (115) 

 

 

 

Starting from 2-cyclopenten-1-ylacetic acid (114) (240 µL, 2.0 mmol) and following the 

general procedure afforded the crude bromolactone. The crude product was purified by flash 

column chromatography (dichloromethane) to yield (±)-6-

bromohexahydrocyclopenta[b]furan-2-one (115) (352 mg, 86%) as a colourless oil with 

spectral data consistant with that previously reported:55 Rf = 0.31 (dichloromethane); FT IR 

(NaCl) νmax 2969, 2881, 1776 cm-1; 1H NMR (270 MHz, CDCl3) δ 5.05 (d, J = 6.2 Hz, 1H, 

C(=O)OCH), 4.43 (d, J = 4.2 Hz, 1H, CHBr), 3.20-3.10 (m, 1H, CH), 2.86 (dd, J = 18.5, 

10.4 Hz, 1H, CHH’), 2.49-2.19 (m, 4H, CH2), 1.58-1.63 (m, 1H, CHH’) ppm; 13C NMR 
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(68 MHz, CDCl3) δ 176.5, 90.5, 52.9, 36.0, 36.0, 33.1, 31.4 ppm; MS (CI+) 222/224 

(M+NH4
+); HRMS calcd for (M+NH4

+) C7H13NO2
79Br 222.0130 and C7H13NO2

81Br 224.0109, 

found 222.0129 and 224.0112; HPLC (3:7, ethanol/hexane); Chiralpak AD: 0.5 mL/min; 225 

nm, tR 19.52 and 25.19 min, the absolute configuration was not determined. 

 

 

(2S)-5-Bromomethyl-3-oxa-2-methyl-δ-pentano-5-lactone (220S/221S) 

 

O

O

O

Br  

 

Starting from (S)-2-allyloxypropionic acid (217S) (100 mg, 0.77 mmol) and following the 

general procedure afforded the crude bromolactone. The crude product was purified by flash 

column chromatography (5:1, dichloromethane/petrol) to afford 220S/221S (92 mg, 57%) as 

a colourless oil in a 63:37 mixture of the (2S,5S) and (2S,5R) diastereomers: Rf = 0.30 (5:1, 

dichloromethane/petrol); [α]23
D = -4.0 (c = 1.3 , CH2Cl2); FT IR (NaCl) νmax 2987, 2941, 2871, 

1748 cm-1; 1H NMR (400 MHz, CDCl3) (2S,5S) diastereomer δ 4.84-4.78 (m, 1H, 

CH2CH(CH2Br)O), 4.30 (q, J = 6.9 Hz, 1H, OCH(CH3)C(=O)), 4.19 (dd, J2 = 12.8 Hz, J3 = 3.6 

Hz,1H, OCHH’CH(CH2Br)O), 3.70 (dd, J2 = 12.8 Hz, J3 = 9.6 Hz, OCHH’CH(CH2Br)O), 3.51 

(dd, J2 = 11.0 Hz, J3 = 4.4 Hz, 1H, CHH’Br), 3.46 (dd, J2 = 11.0 Hz, J3 = 6.8 Hz, 1H, 

CHH’Br), 1.55 (d, J = 6.9 Hz, 3H, CH3) ppm; (2S,5R)  diastereomer δ 4.69-4.64 (m, 1H, 

CH2CH(CH2Br)O), 4.38 (q, J = 6.9 Hz, 1H, OCH(CH3)C(=O)), 4.16 (dd, J2 = 12.8 Hz, J3 = 2.8 

Hz, 1H, OCHH’CH(CH2Br)O), 3.93 (dd, J2 = 12.8 Hz, J3 = 3.0 Hz, OCHH’CH(CH2Br)O), 

3.65-3.56 (m, 2H, CH2Br), 1.54 (d, J = 6.9 Hz, 3H, CH3) ppm; 13C NMR (100 MHz, CDCl3) 

(2S,5S)  diastereomer δ 168.9, 77.1, 72.7, 65.6, 28.9, 17.7 ppm; (2S,5R)  diastereomer δ 

168.8, 77.3, 72.9, 62.5, 28.9, 17.7 ppm;  MS (EI+) 208/210 (M+); HRMS calcd for (M+) 

C6H9O3
79Br 207.9735 and C6H9O3

81Br 209.9715, found 207.9734 and 209.9719; Anal. calcd 

for C6H9O3Br; C, 34.47; H, 4.34; found: C, 34.53; H, 4.24. 
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(2R)-5-Bromomethyl-3-oxa-2-methyl-δ-pentano-5-lactone (220R/221R) 

 

O

O

O

Br  

 

Starting from (R)-2-allyloxypropionic acid (217R) (100 mg, 0.77 mmol) and following the 

general procedure afforded the crude bromolactone. The crude product was purified by flash 

column chromatography (5:1, dichloromethane/petrol) to afford 220R/221R (90 mg, 56%) as 

a colourless oil in a in a 63:37 mixture of the (2R,5R) and (2R,5S) diastereomers: [α]24
D = 

+4.3 (c = 1.2, CH2Cl2). The other spectral data is identical to that for its enantiomer. On 

standing in at 5 ºC for 2 weeks a number of fine colourless needles formed within the 

product colourless oil. On separation and analysis these proved to consist of exclusively the 

major (2R,5R) diastereoisomer: Crystal data for 220R: C6H9BrO3, M = 209.04, orthorhombic, 

P212121 (no. 19), a = 6.94127(12), b = 8.74587(16), c = 12.6315(2) Å, V = 766.83(3) Å3, Z = 

4, Dc = 1.811 g cm–3, µ(Mo-Kα) = 5.306 mm–1, T = 173 K, colourless needles, Oxford 

Diffraction Xcalibur 3 diffractometer; 2658 independent measured reflections, F2 refinement, 

R1 = 0.032, wR2 = 0.064, 1876 independent observed absorption-corrected reflections [|Fo| > 

4σ(|Fo|), 2θmax = 65°], 91 parameters. The absolute structure of 220R was determined by a 

combination of R-factor tests [R1
+ = 0.0315, R1

– = 0.0596] and by use of the Flack parameter 

[x+ = +0.000(10)].  

 

 

A General Procedure for NBS/Catalyst Asymmetric Bromolactonisation 

 

NBS (1 eq.) was added to a stirred solution of substrate (1 eq.) and catalyst (0.05 eq.) in 

dichloromethane (0.025M) at -78 °C under an inert atmosphere of nitrogen. The reaction 

mixture was stirred for 8 h, quenched with 20% aqueous sodium sulphite solution and 

extracted with dichloromethane. The organic layer was washed with water, brine, dried 

(MgSO4), filtered and concentrated in vacuo. Where necessary, the brominated product was 

purified by flash column chromatography. Where applicable, diastereo-excess of the 

bromolactone product was determined by 1H NMR (CDCl3) analysis and enantio-excess by 

chiral HPLC analysis. The effects of the variation of catalyst structure and stoichiometry, 
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solvent, temperature, concentration and time on the yield and the enantioselectivity of the 

reaction are all detailed in the main text (chapter 3). 

 

 

Attempted NBS/Catalyst/TMSCl Asymmetric Bromochlorination 

 

(1R*,2S*)-2-Bromo-1-chloro-1-phenylpropane (274) 

 

 

 

R-IBAM (113) (32 mg, 0.05 mmol), trimethylsilylchloride (140 µL, 1.1 mmol) and trans-β-

methylstyrene (18) (130 µL, 1.1 mmol) were stirred at -78 ºC in dichloromethane (40 mL). 

NBS (196 mg, 1.1 mmol) was added and the reaction mixture stirred at -78 ºC for 8 h under 

an inert atmosphere of nitrogen. The reaction was quenched with 20% aqueous sodium 

sulfite solution (40 mL) and the organic phase separated. The aqueous phase was extracted 

with a further portion of dichloromethane (40 mL) and the combined organic phases were 

washed with water (40 mL), dried (MgSO4), filtered and concentrated in vacuo. The crude 

product was purified by flash column chromatography (petrol) to afford (1S*,2R*)- 274 (108 

mg, 46%) as a single diastereomer as colourless needles with spectral data consistent with 

literature:141 m.p. 35-37 °C; [lit.142 35-36.5 °C]; Rf = 0.33 (petrol); FT IR (NaCl) νmax 3064, 

3033, 2983, 2932, 2868, 1951(w) cm-1; 1H NMR (400 MHz, CDCl3) δ 7.44-7.37 (m, 5H, Ar-

H), 5.02 (d, J = 8.4 Hz, 1H, PhCHCl), 4.50 (dq, J = 6.8, 8.4 Hz, 1H, CHBrCH3), 1.96 (d, J = 

6.8 Hz, 3H, CH3) ppm; 13C NMR (100MHz, CDCl3) δ 139.5, 128.9, 128.6, 127.6, 51.7, 23.6; 

MS (EI+) 232/234/236 (M+.); HRMS calcd for (M+) C9H10
35Cl79Br 231.9654, C9H10

37Cl79Br 

233.9625, C9H10
35Cl81Br 233.9634 and C9H10

37Cl81Br 235.9604, found 231.9657, 231.9630 

and 235.9642; HPLC (1:1, water/acetonitrile+0.05% TFA); Chiralcel OJ-RH: 1 mL/min; 240 

nm, Rf(S,R) 23.65 min, Rf(R,S) 27.39 min; Crystal data for 274: C9H10BrCl, M = 233.53, 

monoclinic, I2/a (no. 15), a = 18.7196(5), b = 5.4883(1), c = 19.2225(5) Å, β = 104.159(3)°, 

V = 1914.90(8) Å3, Z = 8, Dc = 1.620 g cm–3, µ(Cu-Kα) = 7.877 mm–1, T = 173 K, colourless 

needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 1508 independent measured 
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reflections, F2 refinement, R1 = 0.028, wR2 = 0.075, 1270 independent observed absorption-

corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 126°], 131 parameters. 

 

 

A General Procedure for stoichiometric addition of NBS to catalyst 

 

NBS (1-5 mmol) was added to a stirred solution of catalyst (1-5 mmol) in carbon 

tetrachloride/chloroform (5.5-30 mL; carbon tetrachloride/chloroform ratio dependent on 

particular catalyst’s solubility). The reaction was stirred at RT for 45 min to 1 h, until TLC 

demonstrated the complete consumption of starting material. A further portion of carbon 

tetrachloride (5 mL) was then added, and then reaction mixture cooled to 0oC. After standing 

for 30 min a fine white precipitate of succinimide (84-92%) had formed, and was removed by 

filtration through a cold scinter. The filtrate was concentrated in vacuo to afford the 

bromination product as an amorphous solid (quantitative). 

 

 

2-(2-Iodophenyl)-4,5-diphenyl-1H-imidazole (234) 

 

 

 

Following the above procedure, NBS (178 mg, 1 mmol) was added to R-IAM (111R) (425 

mg, 1 mmol) and the resulting brominated intermediate was isolated as a yellow foam (543 

mg, quantitative). A portion of this (252 mg, 0.5 mmol) was then dissolved in 

dichloromethane (4 mL) and cooled to -78 oC. 2-Cyclopentene-1-acetic acid (114) (120 µL, 1 

mmol) was added and then solution was stirred for 15 h. The reaction mixture was 

quenched with 20% aqueous sodium sulphite solution (25 mL), and extracted with 

dichloromethane (20 mL). The organic layer was washed with water (20 mL) and brine (20 

mL), dried (MgSO4), filtered and concentrated in vacuo. The resulting mixture of products 

was separated by flash column chromatography (dichloromethane → 

methanol/dichloromethane, 1:24) to yield bromolactone 115 (36.6 mg, 36%): as previously 

characterized; recovered R-IAM (111R) (127 mg, 59% based on active catalytic species 
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added): as previously characterized; and a small amount of 2-(2-iodophenyl)-4,5-diphenyl-

1H-imidazole (234) (52 mg, 24% based on active catalytic species added): Rf = 0.17 

(dichloromethane); m.p. >230oC; FT IR (NaCl) νmax 1600, 1503 cm-1; 1H NMR (270 MHz, 

CDCl3) δ 9.92 (sbr, 1H, NH), 8.10 (dd, J3 = 7.8 Hz, J4 = 1.6 Hz, 1H, ArH), 7.94 (dd, 

J3 = 8.1 Hz, J4 = 1.2 Hz, 1H, ArH), 7.59 (m, 4H, ArH), 7.43 (dt, J3 = 7.8 Hz, J4 = 1.2 Hz, 1H, 

ArH), 7.38-7.29 (m, 6H, ArH), 7.06 (dt, J3 = 7.9 Hz, J4 = 1.6 Hz, 1H, ArH) ppm; MS (CI+) 423 

(M+H+); HRMS calcd for (M+H+) C21H16N2I 423.0358, found 423.0370. 

 

 

6.6. Bromonium ion - Alkene Br+ exchange 

 

(±)-Styrene oxide (267) 

 

 

 

mCPBA (1.66 g, 9.65 mmol) was added to a stirred solution of styrene (266) (550 µL, 4.80 

mmol) in dichloromethane (8 mL) at 15 °C. The reaction was allowed to slowly warm to RT 

and stirred for 20 h. The reaction mixture was quenched with 20% aqueous sodium sulfite 

solution (10 mL) and partitioned between dichloromethane (40 mL) and water (40 mL). The 

organic phase was separated and the aqueous phase re-extracted with a further portion of 

dichloromethane (40 mL). The combined organic layers were washed with saturated 

aqueous sodium hydrogen carbonate (40 mL), water (40 mL), dried (MgSO4), filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

(2:3, dichloromethane /petrol) to afford racemic styrene oxide (267) (511 mg, 89%) as a 

colourless oil with spectral data consistent with literature:143 Rf = 0.35 (2:3, dichloromethane 

/petrol); FT IR (NaCl) νmax 2962, 2898, 1261 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.40-7.28 (m, 

5H, Ar-H), 3.89 (dd, J = 4.2, 2.7 Hz, 1H, PhCH), 3.18 (dd, J = 5.5, 4.2 Hz, 1H, CHH’), 2.83 

(dd, J = 5.5, 2.7 Hz, 1H, CHH’) ppm; 13C NMR (100 MHz, CDCl3) δ 137.6, 128.5, 128.2, 

125.5, 52.4, 51.3 ppm; MS (ES+) 120 (M+.). 
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(±)-2-Bromo-2-phenylethanol, (261) 

 

 

 

A 48% aqueous solution of hydrobromic acid (33 mL) was added to racemic styrene oxide 

(267) (1.54 mg, 12.8 mmol) stirred at RT in chloroform (33 mL). The biphasic mixture was 

stirred for 30 mins, following which it was diluted with water (400 mL) and extracted with 

dichloromethane (2 x 200 mL). The combined organic extracts were dried (MgSO4), filtered 

and concentrated in vacuo. The crude product was purified by flash column chromatography 

(4:1, dichloromethane/petrol) to afford racemic 2-bromo-2-phenylethanol (261) (1.93 g, 75%) 

as colourless needles with spectral data consistent with literature:144 m.p. 37-38 °C; [lit.144 

35-36.5 °C]; Rf = 0.26 (4:1, dichloromethane/petrol); FT IR (NaCl) νmax 3383 (br), 3032, 2929 

cm-1; 1H NMR (400 MHz, CDCl3) δ 7.46-7.34 (m, 5H, Ar-H), 5.09 (dd, J = 7.8, 5.8 Hz, 1H, 

PhCH), 4.10 (dd, J3 =  7.8 Hz, J2 =  12.2 Hz, 1H, CHH’OH), 3.98 (dd, J3 =  5.8 Hz, J2 =  12.2 

Hz 1H, CHH’OH), 2.20 (s (br), 1H, OH) ppm; 13C NMR (100 MHz, CDCl3) δ 138.3, 129.0, 

128.9, 128.0, 67.5, 57.0 ppm; MS (CI+) 218/220 (M+NH4
+); HRMS calcd for (M+NH4

+) 

C8H13NO79Br 218.0181 and C8H13NO81Br 220.0160, found 218.0186 and 220.0166. 

 

(S)-Mosher’s acyl chloride, (269) 

 

 

 

Oxallyl chloride (126 µL, 1.44 mmol), followed by a drop of DMF, was added to a solution of 

(R)-Mosher’s acid (187 mg, 0.80 mmol) stirred in hexane at RT under an inert atmosphere of 

nitrogen. The resulting reaction mixture was stirred at RT for 3 h until it ceased to 

effervesce. The hexane layer was decanted off from the oily residue which remained at the 

bottom of the flask. The residue was washed with a further portion of hexane (2 mL) and the 

decanted liquid, plus washings, was concentrated in vacuo to afford (S)-Mosher’s acyl 

chloride (269) (0.83 mmol, quantative) as a colourless oil with spectral data consistent with 

literature:145 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 7.6 Hz, 2H, Ar-H), 7.50-7.45 (m, 3H, 
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Ar-H), 3.79 (q, J = 1.9 Hz, 3H, OCH3) ppm; 13C NMR (100 MHz, CDCl3) δ 171.0, 130.7, 

130.4, 128.7, 126.9, 122.6 (q, J = 289 Hz), 89.2 (q, J = 27 Hz), 56.7 ppm. 

 

 

(2R)-2’-Bromo-2’-phenylethyl 2-methoxy-2-trifluoromethylphenylacetate (270) 

 

 

 

Racemic 2-bromo-2-phenylethanol (261) (50 mg, 0.26 mmol), triethylamine (90 µL, 

0.65 mmol) and DMAP (64 mg, 0.52 mmol) were stirred in dichloromethane (2 mL) at RT 

under an inert atmosphere of nitrogen. (S)-Mosher’s acyl chloride (269) (132 mg, 0.52 

mmol) was added as a 0.55M solution in deuterated chloroform and the reaction mixture 

was allowed to stir for 3.5 h. The reaction mixture was quenched with 0.1M aqueous 

hydrochloric acid (40 mL) and extracted with diethylether (40 mL). The organic layer was 

washed with a saturated aqueous solution of sodium hydrogen carbonate (40 mL), brine (40 

mL), dried (MgSO4), filtered and concentrated in vacuo to yield (270) (100 mg, 92%), in a 

1:1 mixture of diastereomers, as a viscous colourless oil: Rf = 0.84 (4:1, 

dichloromethane/petrol); 1H NMR (400 MHz, CDCl3) (2’S,2R) δ 7.45-7.23 (m, 10H, Ar-H), 

5.22-5.17 (m, 1H, PhCHBr), 4.92-4.75 (m, 2H, BrCCH2O), 3.45 (s, 3H, OCH3) ppm; (2’R,2R) 

δ (m, 10H, Ar-H), 5.22-5.17 (m, 1H, PhCHBr), 4.92-4.75 (m, 2H, BrCCH2O),  3.42 (s, 3H, 

OCH3) ppm. 

 

 

Di(2-bromo-2-phenyleth-1-yl) sulfite (268) 

 

 

 

A solution of thionyl chloride (61 µL, 0.83 mmol) in dichloromethane (0.2 mL) was added to 

a solution of racemic 2-bromo-1-phenyl-ethanol (261) (150 mg, 0.75 mmol) stirred at RT in 
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dichloromethane (0.8 mL). The reaction mixture was stirred for 26 h before quenching with 

saturated aqueous solution of sodium hydrogen carbonate (10 mL). The mixture was 

extracted with dichloromethane (2 × 15 mL) and the combined organic phases were washed 

with water (15 mL), brine (15 mL), dried (MgSO4), filtered and concentrated in vacuo. The 

crude product mixture was purified by flash column chromatography (1:1, 

dichloromethane/petrol) to afford di(2-bromo-2-phenyleth-1-yl) sulfite (268) (135 mg, 78%) in 

a complex mixture of epimers as colourless low melting needles: Rf = 0.51 (4:1, 

dichloromethane/petrol); FT IR (NaCl) νmax 3033, 1494, 1455, 1266, 1205 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.42-7.34 (m, 10H, Ar-H), 5.06-5.01 (m, 2H, PhCHBr), 4.52-4.27 (m, 

4H, PhCHBrCH2) ppm; 13C NMR (100 MHz, CDCl3) δ 137.6, 137.4, 129.3, 129.0, 127.9, 

65.2, 50.0, 49.7 ppm; MS (CI+) 464/466/468 (M+NH4
+); HRMS calcd for (M+NH4

+) 

C16H20NO3S
79Br2 463.9531, C16H20NO3S

79Br81Br 465.9510 and C16H20NO3S
81Br2 467.9490, 

found 463.9539, 465.9519 and 467.9497; Anal. calcd for C16H16O3SBr2: C, 42.88; H, 3.60; 

found: C, 43.00; H, 3.67; Crystal data for 268: C16H16Br2O3S, M = 448.17, monoclinic, I2/a 

(no. 15), a = 23.8581(2), b = 5.52906(5), c = 26.0239(3) Å, β = 102.5258(9)°, V = 

3351.19(11) Å3, Z = 8, Dc = 1.777 g cm–3, µ(Cu-Kα) = 7.384 mm–1, T = 173 K, colourless 

platy needles, Oxford Diffraction Xcalibur PX Ultra diffractometer; 3214 independent 

measured reflections, F2 refinement, R1 = 0.055, wR2 = 0.139, 3080 independent observed 

absorption-corrected reflections [|Fo| > 4σ(|Fo|), 2θmax = 142°], 199 parameters. 

 

 

(±)-1-Phenylpropylene oxide (276) 

 

 

 

mCPBA (6.45 g, 37.4 mmol) was added to a stirred solution of trans-β-methylstyrene (18) 

(2.0 mL, 18.7 mmol) in dichloromethane (30 mL) at 15 °C. The reaction was allowed to 

slowly warm to RT and stirred for 18 h. The reaction mixture was quenched with 20% 

aqueous sodium sulfite solution (40 mL) and partitioned between dichloromethane (200 mL) 

and water (200 mL). The organic phase was separated and the aqueous phase re-extracted 

with a further portion of dichloromethane (200 mL). The combined organic layers were 

washed with saturated aqueous sodium hydrogen carbonate (200 mL), water (200 mL), 
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dried (MgSO4), filtered and concentrated in vacuo to afford (±)-1-phenylpropylene oxide 

(276) (2.17 g, 87%) as a pale yellow oil with spectral data consistent with literature:146 Rf = 

0.36 (2:3, dichloromethane/petrol); FT IR (NaCl) νmax 3088, 3865, 3033, 2987, 2928, 1954 

(w), 1883 (w), 1770 (w) cm-1; 1H NMR (400 MHz, CDCl3) δ 7.38-7.31 (m, 5H, Ar-H), 3.61 (d, 

J = 2.1 Hz, 1H, PhCH), 3.08 (dq, J = 5.2, 2.1 Hz, 1H, CH(O)CHCH3), 1.49 (d, J = 5.2 Hz, 3H, 

CH3) ppm; 13C NMR (100 MHz, CDCl3) δ 137.8, 128.5, 128.1, 125.6, 59.6, 59.1, 17.9 ppm; 

MS (ES+) 134 (M+). 

 

 

(±)-1-Bromo-1-phenylpropan-2-ol (271/277) 

 

 

 

A cooled (-10 °C) 48% aqueous solution of hydrobromic acid (10 mL) was added to racemic 

1-phenylpropylene oxide (276) (500 mg, 3.72 mmol) stirred at -10 °C in chloroform (10 mL). 

The biphasic mixture was stirred for 2 h, following which it was diluted with water (200 mL) 

and extracted with dichloromethane (2 x 100 mL). The combined organic extracts were 

washed with water (100 mL), dried (MgSO4), filtered and concentrated in vacuo. The crude 

product was purified by flash column chromatography (4:1, dichloromethane/petrol) to afford 

racemic 1-bromo-1-phenylpropan-2-ol (271/277) (581 mg, 73%) as a colourless oil in a 

73:27 inseparable mixture of the (1R*,2S*) and (1S*,2S*) diastereomers with spectral data 

consistent with literature:147 Rf = 0.36 (4:1, dichloromethane/petrol); FT IR (NaCl) νmax 3409 

(br), 3092, 3030, 2978, 2932, 2897, 1953(w), 1882(w), 1807(w), 1710(w) cm-1; 1H NMR (400 

MHz, CDCl3) (1R*,2S*) δ 7.50-7.48 (m, 2H, Ar-H), 7.43-7.33 (m, 3H, Ar-H), 4.90 (d, J = 

6.4 Hz, 1H, PhCH), 4.29-4.19 (m, 1H, CH(OH)CH3), 2.04 (s (br), 1H, OH), 1.38 (d, J = 

6.0 Hz, 3H, CH3) ppm; (1S*,2S*) δ 7.43-7.33 (m, 5H, Ar-H), 4.89 (d, J =  8.4 Hz, 1H, PhCH), 

4.29-4.19 (m, 1H, CH(OH)CH3), 2.04 (s (br), 1H, OH), 1.13 (d, J = 6.4 Hz, 3H, CH3) ppm; 
13C NMR (100MHz, CDCl3) (1R*,2S*) δ 138.2, 128.8, 128.8, 128.7, 71.6, 60.8, 20.1 ppm; 

(1S*,2S*) δ 139.1, 128.8, 128.8, 128.0, 71.6, 65.1, 19.7 ppm; GCMS (EI+) 12.98 min; 

(1S*,2S*)-diastereomer, 170/172 (PhCHBr+H+), 214/216 (M+), 13.38 min; (1R*,2S*)-

diastereomer, 170/172 (PhCHBr+H+), 214/216 (M+); HRMS calcd for (M+) C9H11O
79Br 

213.9993 and C9H11O
81Br 215.9973, found 213.9989 and 215.9971. 
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(2R)-2’-Bromo-1’-methyl-2’-phenylethyl 2-methoxy-2-trifluoromethylphenylacetate 

(278) 

 

 

 

Racemic 1-bromo-1-phenylpropan-2-ol (271/277) (50 mg, 0.23 mmol) as a 27:73, 

(1S*,2S*):(1R*,2S*) mixture of diastereomers, triethylamine (81 µL, 0.58 mmol) and DMAP 

(57 mg, 0.46 mmol) were stirred in dichloromethane (2 mL) at RT under an inert atmosphere 

of nitrogen. (S)-Mosher’s acyl chloride (269) (117 mg, 0.46 mmol) was added as a 0.55M 

solution in deuterated chloroform and the reaction mixture was allowed to stir for 2.5 h. The 

reaction mixture was quenched with 0.1M aqueous hydrochloric acid (40 mL) and extracted 

with diethylether (40 mL). The organic layer was washed with a saturated aqueous solution 

of sodium hydrogen carbonate (40 mL), brine (40 mL), dried (MgSO4), filtered and 

concentrated in vacuo to yield Mosher’s ester (278) (99 mg, 98%) as a colourless 

amorphous solid in a mixture of the four epimers (2’R,1’S,2R):(2’S,1’R,2R): 

(2’S,1’S,2R):(2’R,1’R,2R), 36:36:14:14: 1H NMR (400 MHz, CDCl3) (2’R,1’S,2R) δ 7.44-7.24 

(m, 10H, Ar-H), 5.74-5.60 (m, 1H, PhCHBrCHO), 4.98 (d, J = 7.2 Hz, 1H, PhCHBr), 3.36 (s, 

3H, OCH3), 1.58 (d, J = 6.4 Hz, 3H, CH3) ppm; (2’S,1’R,2R) δ 7.44-7.24 (m, 10H, Ar-H), 

5.74-5.60 (m, 1H, PhCHBrCHO), 4.97 (d, J = 8.0 Hz, 1H, PhCHBr), 3.28 (s, 3H, OCH3), 1.51 

(d, J = 6.0 Hz, 3H, CH3) ppm; (2’S,1’S,2R) δ  7.63-7.61 (m, 2H, Ar-H), 7.44-7.24 (m, 8H, Ar-

H), 5.74-5.60 (m, 1H, PhCHBrCHO), 4.93 (d, J = 8.0 Hz, 1H, PhCHBr), 3.62 (s, 3H, OCH3), 

1.28 (d, J = 6.4 Hz, 3H, CH3) ppm; (2’R,1’R,2R) δ  7.63-7.61 (m, 2H, Ar-H), 7.44-7.24 (m, 

8H, Ar-H), 5.74-5.60 (m, 1H, PhCHBrCHO), 4.94 (d, J = 8.4 Hz, 1H, PhCHBr), 3.67 (s, 3H, 

OCH3), 1.14 (d, J = 6.4 Hz, 3H, CH3) ppm. 
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(2S)-1-Bromo-1-phenylpropan-2-ol (271/277) 

 

 

 

A cooled (-10 °C) 48% aqueous solution of hydrobromic acid (20 mL) was added to (1S,2S)-

1-phenylpropylene oxide (276) (1.05 mL, 7.75 mmol) stirred at -10 °C in chloroform (20 mL). 

The biphasic mixture was stirred for 35 mins following which it was diluted with water (300 

mL) and extracted with dichloromethane (2 x 150 mL). The combined organic extracts were 

washed with water (200 mL), dried (MgSO4), filtered and concentrated in vacuo. The crude 

product was purified by flash column chromatography (4:1, dichloromethane/petrol) to afford 

(2S)-1-bromo-1-phenylpropan-2-ol (271/277) (1.47 g, 88%) as a colourless oil in a 75:25 

inseparable mixture of the (1R,2S) and (1S,2S) diastereomers: [α]27
D = -43.4 (c = 2.2, 

CH2Cl2). All other spectral data is identical to that reported above for the racemic mixture. 

  

 

(1’S,2R)-2’-Bromo-1’-methyl-2’-phenylethyl 2-methoxy-2-trifluoromethylphenylacetate 

(278) 

 

 

(2S)-1-Bromo-1-phenylpropan-2-ol (271/277) (50 mg, 0.23 mmol) as a 32:68, 

(1S,2S):(1R,2S) mixture of diastereomers, triethylamine (81 µL, 0.58 mmol) and DMAP (57 

mg, 0.46 mmol) were stirred in dichloromethane (2 mL) at RT under an inert atmosphere of 

nitrogen. (S)-Mosher’s acyl chloride (269) (117 mg, 0.46 mmol) was added as a 0.55M 

solution in deuterated chloroform and the reaction mixture was allowed to stir for 2.5 h. The 

reaction mixture was quenched with 0.1M aqueous hydrochloric acid (40 mL) and extracted 

with diethylether (40 mL). The organic layer was washed with a saturated aqueous solution 

of sodium hydrogen carbonate (40 mL), brine (40 mL), dried (MgSO4), filtered and 

concentrated in vacuo to yield Mosher’s ester (278) (99 mg, 98%) as a colourless 
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amorphous solid in a mixture of two epimers (2’R,1’S,2R):(2’S,1’S,2R), 65:35: 1H NMR (400 

MHz, CDCl3) (2’R,1’S,2R) δ 7.44-7.28 (m, 10H, Ar-H), 5.57 (dq, J = 6.0 and 7.6 Hz, 1H, 

PhCHBrCHO), 4.98 (d, J = 7.6 Hz, 1H, PhCHBr), 3.36 (s, 3H, OCH3), 1.58 (d, J = 6.0 Hz, 

3H, CH3) ppm; (2’S,1’S,2R) δ 7.63-7.61 (m, 2H, Ar-H), 7.44-7.28 (m, 8H, Ar-H), 5.63 (dq, J = 

6.4 and 8.0 Hz, 1H, PhCHBrCHO), 4.93 (d, J = 8.0 Hz, 1H, PhCHBr), 3.62 (s, 3H, OCH3), 

1.28 (d, J = 6.4 Hz, 3H, CH3) ppm. 

 

 

(±)-trans-2-Bromocyclohexanol (287) 

 

OH

Br
(±)  

 

A 48% aqueous solution of hydrobromic acid (13 mL) was added to cyclohexene oxide (286) 

(515 µL, 5.1 mmol) stirred at RT in chloroform (13 mL). The biphasic mixture was stirred for 

1 h, following which it was diluted with water (120 mL) and extracted with dichloromethane 

(2 x 60 mL). The combined organic extracts were washed with water (60 mL), dried 

(MgSO4), filtered and concentrated in vacuo. The crude product was purified by flash 

column chromatography (dichloromethane) to afford racemic trans-2-bromocyclohexanol 

(287) (938 mg, quantitative) as a colourless oil with spectral data consistent with 

literature:148 Rf = 0.27 (dichloromethane); FT IR (NaCl) νmax 3396 (br), 2939, 2861 cm-1; 1H 

NMR (400 MHz, CDCl3) δ  3.92 (ddd, J = 11.8, 9.4, 4.4 Hz, 1H, CHBr),  3.66-3.59 (m, 1H, 

CHOH), 2.59 (d, J = 2.4 Hz, 1H, OH), 2.40-2.34 (m, 1H, CHH), 2.19-2.13 (m, 1H, CHH), 

1.91-1.69 (m, 3H, CH2), 1.45-1.25 (m, 3H, CH2) ppm; 13C NMR (100 MHz, CDCl3) δ 75.4, 

61.9, 36.2, 33.5, 26.7, 24.1 ppm; MS (EI+) 178/180 (M+). 
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A General Procedure for Rearrangement of Bromohydrins (via intervention of a 

bromonium ion) to form the Bromochloride; 

 

(i) with Thionyl Chloride 

 

The bromohydrin (1 eq.) was stirred at 65 °C in neat thionyl chloride (25-30 eq.) for 1.5-

5.5 h. The reaction mixture was allowed to cool and concentrated in vacuo. The residue was 

taken up in dichloromethane and washed with a saturated aqueous solution of sodium 

hydrogen carbonate. The aqueous phase was re-extracted with dichloromethane and the 

combined organic phases were washed with water, dried (MgSO4), filtered and concentrated 

in vacuo. The crude product was subjected to flash column chromatography (petrol) to 

afford the pure bromochloride. 

 

(ii) with Viehe’s Salt 

 

A 0.33M solution of the bromohydrin (1 eq.) in dichloromethane was stirred at 0 °C under an 

inert atmosphere of nitrogen. Viehe’s salt (1.1 eq.) was added and the reaction mixture was 

allowed to gradually warm to RT. After stirring for 18-24 h, the reaction mixture was 

concentrated in vacuo and the crude residue was subjected to flash column chromatography 

(petrol) to afford the pure bromochloride. 

 

 

Bromochlorides formed via Rearrangement of the Bromohydrin 

 

(±)-2-Bromo-1-chloro-1-phenylethane (262) 

 

 

 

Starting from (±)-2-bromo-2-phenylethanol (261) (50 mg, 0.25 mmol) and following 

procedure (i) afforded (±)-2-bromo-1-chloro-1-phenylethane (262) (38 mg, 69%) as 

colourless low melting needles with spectral data consistent with literature:121 m.p. 

21-22.5 °C; [lit.149 26-27 °C]; Rf = 0.25 (petrol); FT IR (NaCl) νmax 3065, 3034, 2960, 1953 



 242

(w), 1884 (w), 1805 (w) cm-1; 1H NMR (400 MHz, CDCl3) δ 7.45-7.39 (m, 5H, Ar-H), 5.09 (dd, 

J = 8.8, 6.4 Hz, 1H, PhCHCl), 3.94 (dd, J3 =  6.4 Hz, J2 =  10.4 Hz, 1H, CHH’Br), 3.86 (dd, J3 

=  8.8 Hz, J2 =  10.4 Hz, 1H, CHH’Br) ppm; 13C NMR (100 MHz, CDCl3) δ 138.4, 129.2, 

128.8, 127.4, 61.3, 36.0 ppm; MS (EI+) 218/220/222 (M+.), 125/127 (PhCHCl+.); HRMS calcd 

for (M+.) C8H8
35Cl 79Br 217.9498, C8H8

35Cl81Br 219.9477, C8H8
37Cl79Br 219.9468 and 

C8H8
37Cl81Br 221.9448, found 217.9494, 219.9474 and 221.9444. 

 

(±)-2-Bromo-1-chloro-1-phenylpropane (274/275) 

 

 

 

Starting from (±)-1-bromo-1-phenylpropan-2-ol (271/274) (50 mg, 0.23 mmol) in a 73:27 

mixture of (1R*,2S*) and (1S*,2S*) diastereomers and following procedure (i) afforded (±)-2-

bromo-1-chloro-1-phenylpropane (271/277) (43 mg, 80%) as a colourless oil as a 77:23 

inseparable mixture of the (1S*,2R*) and (1R*,2R*) diastereomers with spectral data 

consistent with literature:141 Rf = 0.33 (petrol); FT IR (NaCl) νmax 3064, 3033, 2982, 2932, 

2868, 1952 (w) cm-1; 1H NMR (400 MHz, CDCl3) (1S*,2R*) δ 7.47-7.36 (m, 5H, Ar-H), 5.02 

(d, J = 8.4 Hz, 1H, PhCHCl), 4.57-4.46 (m, 1H, CHBrCH3), 1.96 (d, J = 6.4 Hz, 1H, CH3) 

ppm; (1R*,2R*) δ 7.47-7.36 (m, 5H, Ar-H), 5.12 (d, J = 6.0 Hz, 1H, PhCHCl), 4.57-4.46 (m, 

1H, CHBrCH3), 1.69 (d, J = 6.8 Hz, 1H, CH3) ppm; 13C NMR (100 MHz, CDCl3) (1S*,2R*) δ 

139.5, 128.9, 128.6, 127.6, 51.7, 23.6 ppm; (1R*,2R*) δ 137.2, 128.4, 128.2, 127.6, 67.5, 

53.0, 22.4 ppm; GCMS (EI+) 13.67 min; (1S*,2R*)-diastereomer, 125/127 (PhCHCl+.), 

232/234/236 (M+.), 14.17 min; (1R*,2R*)-diastereomer, 125/127 (PhCHCl+.), 232/234/236 

(M+.); HRMS calcd for (M+) C9H10
35Cl79Br 231.9654, C9H10

37Cl79Br 233.9625, C9H10
35Cl81Br 

233.9634 and C9H10
37Cl81Br 235.9604, found 231.9650, 233.9629 and 235.9612; HPLC (1:1, 

water/acetonitrile+0.05% TFA); Chiralcel OJ-RH: 1 mL/min; 240 nm, tR(S,S) 19.71 min, 

tR(R,R) 22.68 min, tR(S,R) 23.65 min, tR(R,S) 27.39 min. 

 

Starting from (±)-1-bromo-1-phenylpropan-2-ol (271/277) (300 mg, 1.4 mmol) in a 73:27 

mixture of (1R*,2S*) and (1S*,2S*) diastereomers and following procedure (ii) afforded (±)-2-

bromo-1-chloro-1-phenylpropane (274/275) (280 mg, 86%) as a colourless oil as a 90:10 
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inseparable mixture of the (1S*,2R*) and (1R*,2R*): all data is identical to that previously 

reported. 

 

 

(2R)-2-Bromo-1-chloro-1-phenylpropane (274/275) 

 

 

 

Starting from (2S)-1-bromo-1-phenylpropan-2-ol (271/277) (50 mg, 0.23 mmol) in a 68:32 

mixture of (1R,2S) and (1S,2S) diastereomers and following procedure (i) afforded (R)-2-

bromo-1-chloro-1-phenylpropane (274/275) (59 mg, 97%) as a colourless oil in a 60:40 

inseparable mixture of the (1S,2R) and (1R,2R) diastereomers. All spectral data is identical 

to that previously reported for the racemic mixture. 

 

Starting from (2S)-1-bromo-1-phenylpropan-2-ol (271/277) (50 mg, 0.23 mmol) in a 76:24 

mixture of (1R,2S) and (1S,2S) diastereomers and following procedure (ii) afforded (R)-2-

bromo-1-chloro-1-phenylpropane (274/275) (36 mg, 65%) as a colourless oil in a 93:7 

inseparable mixture of the (1S,2R) and (1R,2R) diastereomers. All spectral data is identical 

to that previously reported for the racemic mixture. 

 

 

(±)-trans-1-Chloro-2-bromocyclohexane (288) 

 

Cl

Br

(±)
 

 

Starting from (±)-trans-2-bromocyclohexanol (287) (100 mg, 0.56 mmol) and following 

procedure (i) afforded (±)-trans-1-chloro-2-bromocyclohexane (288) (133 mg, quantitative) 

as a colourless oil with spectral data consistent with literature:150 FT IR (NaCl) νmax 2941, 

2863 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.27-4.20 (m, 2H, CHBr and CHCl), 2.46-2.39 (m, 

2H, CH2), 1.95-1.75 (m, 2H, CH2), 1.53-1.44 (m, 2H, CH2) ppm; 13C NMR (100 MHz, CDCl3) 
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δ 62.9, 55.5, 33.4, 32.8, 23.4, 22.6 ppm; MS (EI+) 196/198/200 (M+); HRMS calcd for (M+) 

C6H10
35Cl79Br 195.9654, found 195.9645. 

 

 

A General Procedure for the Bromochlorination of Alkenes 

 

(±)-Iso-amarine (0.01 eq.), trimethylsilylchloride (1.1 eq.) and the alkene (1 eq.) were stirred 

at RT in dichloromethane (0.25M solution). NBS (1.1 eq.) was added and the reaction 

mixture stirred for 2 h. The reaction was quenched with 20% aqueous sodium sulfite solution 

and extracted with two portions of dichloromethane. The combined organic phases were 

washed with water, dried (MgSO4), filtered and concentrated in vacuo to afford the crude 

bromochlorinated products. 

 

 

Bromochlorides formed via Bromochlorination of the Alkenes 

 

(±)-2-Bromo-1-chloro-1-phenylethane (262) 

 

 

 

Starting from styrene (266) (573 µL, 5 mmol) and following the general procedure afforded 

the crude bromochloride. The crude product was purified by flash column chromatography 

(petrol) to yield racemic 2-bromo-1-chloro-1-phenylethane (262) (983 mg, 90%). All data is 

identical to that previously reported. 

 

(1R*,2S*)-2-Bromo-1-chloro-1-phenylpropane (274) 

 

Br

Cl

(±)
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Starting from trans-β-methylstyrene (18) (130 µL, 1 mmol) and following the general 

procedure afforded the crude bromochloride. The crude product was purified by flash 

column chromatography (petrol) to yield (1R*,2S*)-2-bromo-1-chloro-1-phenylpropane (274) 

(154 mg, 66%) as a single diastereomer as colourless needles. All spectral data is identical 

to that previously reported. 

 

 

(±)-2-Bromo-1-chloro-1-(4-methoxyphenyl)propane (293) 

 

 

 

Starting from trans-anethole (21) (148.5 µL, 1 mmol) and following the general procedure 

afforded the crude bromochloride. The product mixture was triturated with 

dichloromethane/petrol and the resulting white ppt was removed by filtration. The filtrate was 

concentrated in vacuo to yield 293 as a colourless oil (287 mg, quantative), obtained as a 

87:13 mixture of the (1S*,2R*) and (1R*,2R*) diastereomers: FT IR (NaCl) νmax 3037, 2968, 

2993, 2837, 2057 (w), 1889 (w), 1720 (w) cm-1; 1H NMR (400 MHz, CDCl3) (1S*,2R*) δ 7.35 

(d, J = 8.8 Hz, 2H, Ar-H), 6.93 (d, J = 8.8 Hz 2H, Ar-H), 5.00 (d, J = 8.8 Hz, 1H, PhCHCl), 

4.55-4.45 (m, 1H, CHBrCH3), 3.85 (s, 3H, OCH3), 1.96 (d, J = 6.4 Hz, 3H, CHBrCH3) ppm; 

(1R*,2R*) δ 7.38 (d, J = 8.8 Hz, 2H, Ar-H), 6.93 (d, J = 8.8 Hz, 2H, Ar-H), 5.10 (d, J = 5.6 Hz, 

1H, PhCHCl), 4.55-4.45 (m, 1H, CHBrCH3), 3.85 (s, 3H, OCH3), 1.68 (d, J = 6.8 Hz, 3H, 

CHBrCH3) ppm; 13C NMR (100MHz, CDCl3) (1S*,2R*) δ 159.8, 131.7, 128.8, 113.8, 67.5, 

55.3, 52.1, 23.7 ppm; (1R*,2R*) δ 159.8, 313.7, 129.4, 113.6, 67.3, 55.3, 53.3, 22.2 ppm; 

GCMS (EI+) 17.37 min; (1S*,2R*)-diastereomer, 155/157 (PhCHCl+H+), 262/264/266 (M+), 

17.66 min; (1R*,2R*)-diastereomer, 155/157 (PhCHCl+H+), 262/264/266 (M+); HRMS calcd 

for (M+) C10H12O
35Cl79Br 261.9760, found 261.9760. 
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(±)-2-Bromo-1-chloro-1-(4-methylphenyl)ethane (292) 

 

 

 

Starting from 4-methylstyrene (291) (132 µL, 5 mmol) and following the general procedure 

afforded the crude bromochloride. The crude product was purified by flash column 

chromatography (petrol) to yield 292 (223 mg, 95%) as a colourless oil: Rf = 0.25 (petrol); FT 

IR (NaCl) νmax 3027, 2956, 2922, 2862, 1904 (w), 1794 (w) cm-1; 1H NMR (400 MHz, CDCl3) 

δ 7.34 (d, J = 8.2 Hz, 2H, Ar-H), 7.24 (d, J = 8.2 Hz, 2H, Ar-H),  5.07 (dd, J =  6.1, 8.9 Hz, 

1H, PhCHCl), 3.94 (dd, J3 =  6.1 Hz, J2 =  10.4 Hz, 1H, CHH’Br), 3.86 (dd, J3 =  8.9 Hz, J2 = 

 10.4 Hz, 1H, CHH’Br), 2.41 (s, 3H, Ar-CH3) ppm; 13C NMR (100 MHz, CDCl3) δ 139.2, 

135.5, 129.5, 127.2, 61.3, 36.0, 21.3 ppm; MS (EI+) 232/234/236 (M+.), 139/141 (ArCHCl+.); 

HRMS calcd for (M+.) C9H10
35Cl79Br 231.9653, found 231.9654. 

 

 

A General Procedure for Investigating Br+ Exchange between Bromonium Ions and 

Alkenes; 

 

(i) with Thionyl Chloride  

 

The bromohydrin was stirred with the alkene (1-5 eq.) at 65 °C in neat thionyl chloride (25-

30 eq.) for 2.5 h. The reaction mixture was allowed to cool and concentrated in vacuo. The 

residue was taken up in dichloromethane and washed with a saturated aqueous solution of 

sodium hydrogen carbonate. The aqueous phase was re-extracted with dichloromethane 

and the combined organic phases were washed with water, dried (MgSO4), filtered and 

concentrated in vacuo. The composition of the crude product mixture was analysed by 1H 

NMR (CDCl3) analysis. Where applicable, the product was purified by flash column 

chromatography (petrol) and analysed by chiral HPLC. 
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(ii) with Viehe’s Salt 

 

A 0.33M solution of the bromohydrin and alkene (1-10 eq.) in dichloromethane was stirred at 

0°C under an inert atmosphere of nitrogen. Viehe’s salt (1.1 eq.) was added and the 

reaction mixture was allowed to gradually warm to RT. After stirring for between 18 and 

24 h, the reaction mixture was concentrated in vacuo and the composition of the crude 

product mixture was analysed by 1H NMR (CDCl3) analysis. Where applicable, the product 

was purified by flash column chromatography (petrol) and analysed by chiral HPLC. 

 

 

Bromosulfonates: Synthesis and Rearrangement to form the Bromochloride 

 

(1’S)-2’-Bromo-1’-methyl-2’-phenylethyl p-toluenesulfonate (281) 
 

 

 

(2S)-1-Bromo-1-phenylpropan-2-ol (271/277) (100 mg, 0.47 mmol), as a 73:27 mixture of 

the (1R,2S) and (1S,2S) diastereomers, was stirred with DMAP (114 mg, 0.93 mmol) in 

dichloromethane (4 mL) under an inert atmosphere of nitrogen. The solution was cooled to 

0 ºC and tosyl chloride (133 mg, 0.70 mmol) was added. The reaction mixture was allowed 

to gradually warm to RT and stirred for 19 h. The mixture was diluted with dichloromethane 

(20 mL), washed with brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The 

crude product was purified by flash column chromatography (1:1, dichloromethane/petrol) to 

afford 281 (161 mg, 94%) as a colourless amorphous solid in a 72:28 inseparable mixture of 

the (1R,2S) and (1S,2S) diastereomers: Rf = 0.29 (1:1, dichloromethane/petrol); [α]23
D = 

-15.5 (c = 1.0, CH2Cl2); FT IR (NaCl) νmax 3064, 3032, 2990, 2938, 2873, 1920 (w), 1809 (w), 

1362, 1177 cm-1; 1H NMR (400 MHz, CDCl3) (1R*,2S*) δ 7.58 (d, J = 8.4 Hz, 2H, Ar-H), 

7.36-7.24 (m, 7H, Ar-H), 4.94-4.89 (m, 2H, PhCHBr and CH(OSO2Ar)CH3), 2.45 (s, 3H, Ar-

CH3), 1.55 (d, J = 5.6 Hz, 3H, CH(OSO2Ar)CH3) ppm; (1S*,2S*) δ 7.83 (d, J = 8.0 Hz, 2H, 

Ar-H), 7.36-7.24 (m, 7H, Ar-H), 5.02 (pseudo quintet, J = 6.4 Hz, 1H, CH(OSO2Ar)CH3), 

4.94-4.89 (m, 1H, PhCHBr), 2.47 (s, 3H, Ar-CH3), 1.29 (d, J = 6.4 Hz, 3H, CH(OSO2Ar)CH3) 

ppm; 13C NMR (100MHz, CDCl3) (1R*,2S*); δ 144.7, 137.2, 133.7, 129.7, 128.7, 128.6, 
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128.5, 127.7, 80.8, 56.0, 21.7, 18.9 ppm; (1S*,2S*); δ 144.9, 136.8, 133.8, 129.8, 128.9, 

128.6, 128.6, 128.0, 81.1, 55.1, 21.7, 18.6 ppm; MS (CI+) 386/388 (M+NH4
+); HRMS calcd 

for (M+NH4
+) C16H21NO3

79BrS 386.0426 and C16H21NO3
81BrS 388.0405, found 386.0428 and 

388.0407; Anal. calcd for C16H17O3BrS: C, 52.04; H, 4.64; found: C, 52.13; H, 4.62. 

 

 

2,5-Dioxoheptyl 2-(chlorosulfonyl)benzoate (300)125 

 

 

 

A mixture of o-sulfobenzoic acid anhydride (299) (1.23 g, 6.6 mmol) and phosphorus 

pentachloride (3.68g, 13.2 mmol) was heated at 90 ºC under an inert atmosphere of 

nitrogen for 6 h. The resulting oil was allowed to cool, dissolved in diethyl ether (50 mL), and 

rinsed with ice-water (50 mL). The organic phase was dried (MgSO4), filtered and 

concentrated in vacuo to afford 1.71 g of crude oil. The crude oil was then dissolved in 

excess methoxyethoxyethanol (2.4 mL, 20 mmol) and heated to 60 ºC under an inert 

atmosphere of nitrogen for 20 h. The reaction mixture was purified by flash column 

chromatography (9:1, ethyl acetate/petrol) to afford 2,5-dioxoheptyl 2-

(chlorosulfonyl)benzoate (300) (1.3 g, 60%) as a colourless oil with spectral data consistent 

with literature:125 Rf = 0.47 (9:1, ethyl acetate/petrol); FT IR (NaCl) νmax 3098, 2882, 1964(w), 

1738, 1376 (SO2), 1184 (SO2) cm-1; 1H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.0 Hz, 1H, Ar-

H), 7.83-7.72 (m, 3H, Ar-H), 4.59-4.57 (m, 2H, C(O)OCH2), 3.88-3.86 (m, 2H, CH2O), 3.69-

3.67 (m, 2H, CH2O), 3.57-3.55 (m, 2H, CH2O), 3.38 (s, 3H, OCH3) ppm; 13C NMR (100 MHz, 

CDCl3) δ 165.8, 141.5, 135.2, 132.3, 131.5, 130.3, 129.0, 71.8, 70.5, 68.9, 65.7, 59.1 ppm; 

MS (ES+) 323/325 (M+H+), 345/347 (M+Na+); HRMS calcd for (M+H+) C12H16O6S
35Cl 

323.0356 and C12H16O6S
37Cl 325.0327, found 323.0352 and 325.0332; calcd for (M+Na+) 

C12H16O6S
35ClNa 345.0176 and C12H16O6S

37ClNa 347.0146, found 345.0174 and 347.0147. 
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(1’S)-2’-Bromo-1’-methyl-2’-phenylethyl 2-(2,5-dioxoheptylcarboxy)-1-benzosulfonate 

(297) 

 

 

(2S)-1-Bromo-1-phenylpropan-2-ol (271/277) (100 mg, 0.47 mmol), as a 75:25 mixture of 

the (1R,2S) and (1S,2S) diastereomers, was stirred with DMAP (85 mg, 0.70 mmol) in 

dichloromethane (3 mL) under an inert atmosphere of nitrogen. The solution was cooled to 

0 ºC and a solution of sulfonyl chloride 300 (180 mg, 0.56 mmol) in dichloromethane (2 mL) 

was added. The reaction mixture was allowed to gradually warm to RT and stirred for 20 h. 

The mixture was concentrated in vacuo and the resulting crude oil was purified by flash 

column chromatography (3:2, ethyl acetate/petrol) to yield 1-bromo-1-phenylpropyl 2-(2,5-

dioxoheptylcarboxy)-1-benzosulfonate (297) (167 mg, 72%) as a colourless gummy material 

in a 70:30 inseparable mixture of the (1R,2S) and (1S,2S) diastereomers: Rf = 0.48 (3:2, 

ethyl acetate/petrol); [α]24
D = -7.3 (c = 2.6, CH2Cl2); FT IR (NaCl) νmax 3065, 3032, 2880, 

1959(w), 1736, 1367 (SO2), 1185 (SO2) cm-1; 1H NMR (400 MHz, CDCl3) (1R*,2S*) δ 7.78 

(d, J = 8.0 Hz, 1H, Ar-H), 7.70-7.21 (m, 8H, Ar-H), 5.15 (pseudo quintet, J = 6.2 Hz, 1H, 

CH(OSO2Ar)CH3), 5.06 (d, J = 6.0 Hz, 1H, PhCHBr), 4.58-4.54 (m, 2H, C(O)OCH2), 3.87-

3.85 (m, 2H, CH2O), 3.71-3.67 (m, 2H, CH2O), 3.59-3.56 (m, 2H, CH2O), 3.40 (s, 3H, OCH3) 

1.58 (d, J = 6.4 Hz, 3H, CH3) ppm; (1S*,2S*) δ 8.04 (d, J = 8.0 Hz, 1H, Ar-H), 7.70-7.21 (m, 

8H, Ar-H), 5.26 (pseudo quintet, J = 6.5 Hz, 1H, CH(OSO2Ar)CH3), 5.02 (d, J = 6.8 Hz, 1H, 

PhCHBr), 4.58-4.54 (m, 2H, C(O)OCH2), 3.87-3.85 (m, 2H, CH2O), 3.71-3.67 (m, 2H, 

CH2O), 3.59-3.56 (m, 2H, CH2O), 3.40 (s, 3H, OCH3) 1.31 (d, J = 6.4 Hz, 3H, CH3) ppm; 13C 

NMR (100MHz, CDCl3) (1R*,2S*); δ 166.2, 137.1, 134.8, 133.3, 132.9, 130.7, 129.3, 128.6, 

128.5 128.4, 82.1, 71.9, 70.5, 68.7, 65.3, 59.0, 56.1, 18.8 ppm; (1S*,2S*); δ 166.8, 136.8, 

134.8, 133.5, 133.2, 130.7, 129.7, 129.5, 129.3, 128.9, 82.3, 71.9, 70.4, 68.7, 65.3, 59.0, 

54.9, 18.5 ppm; MS (ES+) 523/525 (M+Na+); HRMS calcd for (M+Na+) C21H25O7S
79BrNa 

523.0402 and C21H25O7S
81BrNa 525.0382, found 523.0381 and 525.0365; Anal. calcd for 

C21H25O7SBr: C, 50.31; H, 5.03; found: C, 50.43; H, 5.09. 
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Procedure for Rearrangement of Bromosulfonate 297 with TiCl4
125 

 

(2R)-2-Bromo-1-chloro-1-phenylpropane (274/275) 

 

 

 

To a dichloromethane solution of 1-bromo-1-phenylpropyl 2-(2,5-dioxoheptylcarboxy)-1-

benzosulfonate (297) (50 mg, 0.1 mmol), cooled to -78 ºC, was added TiCl4 (22 µL, 0.2 

mmol). The resulting bright yellow mixture was allowed to gradually warm to RT and stirred 

for 24 h. The reaction was quenched with water (10 mL) and extracted with dichloromethane 

(10 mL). The organic phase was passed through a silica gel plug and concentrated in vacuo 

to give pure (2R)-2-bromo-1-chloro-1-phenylpropane (274/275) (21 mg, 89%) as a 

colourless oil in a mixture of the (1S,2R) and (1R,2R) diastereomers in a 86:14 ratio: [α]27
D = 

+41.8 (c = 3.4, CH2Cl2). All other spectral data is identical to that previously reported for the 

racemic mixture. 

 

 

A Typical Procedure for Investigating Br+ Exchange between Bromonium Ions and 

Alkenes with Bromosulfonate 297 and TiCl4 

 

To a dichloromethane solution of 1-bromo-1-phenylpropyl 2-(2,5-dioxoheptylcarboxy)-1-

benzosulfonate (297) and alkene (2 eq.), cooled to -78 ºC, was added TiCl4 (2 eq.). The 

resulting bright yellow mixture was allowed to gradually warm to RT and stirred for 24 h. The 

reaction was quenched with water and extracted with dichloromethane. The organic phase 

was passed through a silica gel plug and concentrated in vacuo. The crude product mixture 

was analysed by 1H NMR analysis (CDCl3) and, where appropriate, HPLC analysis. 
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8. Appendix 

 

CB0501; (–)-(4S,5S)-1-[(R)-α-acetoxybenzeneacetyl]-4,5-dihydro-2,4,5-

triphenylimidazole (176) 

 

 

Crystal data and structure refinement for CB0501. 

 

Identification code CB0501 

Empirical formula C31 H26 N2 O3 

Formula weight 474.54 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur PX Ultra, 1.54248 Å 

Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 

Unit cell dimensions a = 10.1710(7) Å α = 90° 

 b = 14.6196(9) Å β = 90° 

 c = 17.2572(11) Å γ = 90° 

Volume, Z 2566.1(3) Å3, 4 

Density (calculated) 1.228 Mg/m3 

Absorption coefficient 0.633 mm-1 



 258

F(000) 1000 

Crystal colour / morphology Colourless blocks 

Crystal size 0.22 x 0.21 x 0.15 mm3 

θ range for data collection 3.96 to 68.68° 

Index ranges -12<=h<=12, -17<=k<=17, -20<=l<=20 

Reflns collected / unique 53984 / 4696 [R(int) = 0.0280] 

Reflns observed [F>4σ(F)] 4638 

Absorption correction Numeric analytical 

Max. and min. transmission 0.92271 and 0.87531 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4696 / 2 / 329 

Goodness-of-fit on F2 1.041 

Final R indices [F>4σ(F)] R1 = 0.0390, wR2 = 0.1005 

 R1+ = 0.0390, wR2+ = 0.1005 

 R1- = 0.0392, wR2- = 0.1008 

R indices (all data) R1 = 0.0393, wR2 = 0.1009 

Absolute structure parameter x+ = 0.0(2), x- = 1.1(2) 

Extinction coefficient 0.0032(3) 

Largest diff. peak, hole 0.155, -0.156 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 

 
 
Bond lengths [Å] and angles [°] for CB0501. 
 
N(1)-C(6) 1.375(3) 
N(1)-C(2) 1.426(3) 
N(1)-C(5) 1.476(2) 
C(2)-N(3) 1.275(3) 
C(2)-C(17) 1.478(3) 
N(3)-C(4) 1.469(3) 
C(4)-C(23) 1.513(3) 
C(4)-C(5) 1.553(3) 
C(4)-C(23') 1.574(4) 
C(5)-C(29) 1.519(3) 
C(6)-O(6) 1.211(2) 
C(6)-C(7) 1.528(3) 
C(7)-O(8) 1.445(2) 
C(7)-C(11) 1.478(2) 
C(7)-C(11') 1.602(4) 
O(8)-C(9) 1.358(3) 
C(9)-O(9) 1.205(3) 
C(9)-C(10) 1.499(3) 
C(11)-C(12) 1.3900 
C(11)-C(16) 1.3900 
C(12)-C(13) 1.3900 
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C(13)-C(14) 1.3900 
C(14)-C(15) 1.3900 
C(15)-C(16) 1.3900 
C(11')-C(12') 1.3900 
C(11')-C(16') 1.3900 
C(12')-C(13') 1.3900 
C(13')-C(14') 1.3900 
C(14')-C(15') 1.3900 
C(15')-C(16') 1.3900 
C(17)-C(18) 1.388(3) 
C(17)-C(22) 1.391(3) 
C(18)-C(19) 1.384(3) 
C(19)-C(20) 1.380(4) 
C(20)-C(21) 1.373(4) 
C(21)-C(22) 1.387(3) 
C(23)-C(24) 1.3900 
C(23)-C(28) 1.3900 
C(24)-C(25) 1.3900 
C(25)-C(26) 1.3900 
C(26)-C(27) 1.3900 
C(27)-C(28) 1.3900 
C(23')-C(24') 1.3900 
C(23')-C(28') 1.3900 
C(24')-C(25') 1.3900 
C(25')-C(26') 1.3900 
C(26')-C(27') 1.3900 
C(27')-C(28') 1.3900 
C(29)-C(30) 1.380(3) 
C(29)-C(34) 1.385(3) 
C(30)-C(31) 1.380(3) 
C(31)-C(32) 1.372(4) 
C(32)-C(33) 1.375(4) 
C(33)-C(34) 1.388(3) 
 
C(6)-N(1)-C(2) 125.55(15) 
C(6)-N(1)-C(5) 125.57(17) 
C(2)-N(1)-C(5) 106.08(15) 
N(3)-C(2)-N(1) 114.42(17) 
N(3)-C(2)-C(17) 123.2(2) 
N(1)-C(2)-C(17) 122.15(17) 
C(2)-N(3)-C(4) 108.39(18) 
N(3)-C(4)-C(23) 110.71(18) 
N(3)-C(4)-C(5) 104.79(15) 
C(23)-C(4)-C(5) 116.2(2) 
N(3)-C(4)-C(23') 114.6(2) 
C(23)-C(4)-C(23') 11.9(2) 
C(5)-C(4)-C(23') 104.4(2) 
N(1)-C(5)-C(29) 112.50(15) 
N(1)-C(5)-C(4) 100.56(15) 
C(29)-C(5)-C(4) 113.84(16) 
O(6)-C(6)-N(1) 123.2(2) 
O(6)-C(6)-C(7) 121.42(19) 
N(1)-C(6)-C(7) 115.41(16) 
O(8)-C(7)-C(11) 110.33(19) 
O(8)-C(7)-C(6) 108.73(16) 
C(11)-C(7)-C(6) 111.00(19) 
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O(8)-C(7)-C(11') 101.5(2) 
C(11)-C(7)-C(11') 9.6(2) 
C(6)-C(7)-C(11') 111.8(2) 
C(9)-O(8)-C(7) 114.47(17) 
O(9)-C(9)-O(8) 122.1(2) 
O(9)-C(9)-C(10) 126.3(2) 
O(8)-C(9)-C(10) 111.6(2) 
C(12)-C(11)-C(16) 120.0 
C(12)-C(11)-C(7) 118.25(17) 
C(16)-C(11)-C(7) 121.75(17) 
C(13)-C(12)-C(11) 120.0 
C(12)-C(13)-C(14) 120.0 
C(15)-C(14)-C(13) 120.0 
C(16)-C(15)-C(14) 120.0 
C(15)-C(16)-C(11) 120.0 
C(12')-C(11')-C(16') 120.0 
C(12')-C(11')-C(7) 120.2(3) 
C(16')-C(11')-C(7) 119.6(3) 
C(11')-C(12')-C(13') 120.0 
C(12')-C(13')-C(14') 120.0 
C(15')-C(14')-C(13') 120.0 
C(14')-C(15')-C(16') 120.0 
C(15')-C(16')-C(11') 120.0 
C(18)-C(17)-C(22) 119.42(19) 
C(18)-C(17)-C(2) 121.57(18) 
C(22)-C(17)-C(2) 118.84(18) 
C(19)-C(18)-C(17) 119.9(2) 
C(20)-C(19)-C(18) 120.3(2) 
C(21)-C(20)-C(19) 120.1(2) 
C(20)-C(21)-C(22) 120.1(2) 
C(21)-C(22)-C(17) 120.0(2) 
C(24)-C(23)-C(28) 120.0 
C(24)-C(23)-C(4) 122.26(17) 
C(28)-C(23)-C(4) 117.55(18) 
C(23)-C(24)-C(25) 120.0 
C(24)-C(25)-C(26) 120.0 
C(27)-C(26)-C(25) 120.0 
C(26)-C(27)-C(28) 120.0 
C(27)-C(28)-C(23) 120.0 
C(24')-C(23')-C(28') 120.0 
C(24')-C(23')-C(4) 123.1(3) 
C(28')-C(23')-C(4) 116.9(3) 
C(23')-C(24')-C(25') 120.0 
C(26')-C(25')-C(24') 120.0 
C(25')-C(26')-C(27') 120.0 
C(28')-C(27')-C(26') 120.0 
C(27')-C(28')-C(23') 120.0 
C(30)-C(29)-C(34) 119.28(19) 
C(30)-C(29)-C(5) 118.30(18) 
C(34)-C(29)-C(5) 122.37(18) 
C(29)-C(30)-C(31) 120.3(2) 
C(32)-C(31)-C(30) 120.5(2) 
C(31)-C(32)-C(33) 119.7(2) 
C(32)-C(33)-C(34) 120.2(2) 
C(29)-C(34)-C(33) 120.0(2) 
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CB0502b; 1:1 mandelic acid: iso-amarine diastereomeric salt (182) 

 

 

 

Crystal data and structure refinement for CB0502b. 

 

Identification code CB0502b 

Empirical formula C29 H26 N2 O3 

Formula weight 450.52 

Temperature 293(2) K 

Diffractometer, wavelength OD Xcalibur PX Ultra, 1.54248 Å 

Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 

Unit cell dimensions a = 8.6149(5) Å α = 90° 

 b = 16.0588(8) Å β = 90° 

 c = 17.2764(8) Å γ = 90° 

Volume, Z 2390.1(2) Å3, 4 

Density (calculated) 1.252 Mg/m3 

Absorption coefficient 0.650 mm-1 

F(000) 952 

Crystal colour / morphology Colourless prisms 

Crystal size 0.14 x 0.07 x 0.06 mm3 
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θ range for data collection 3.76 to 68.71° 

Index ranges -9<=h<=10, -19<=k<=19, -20<=l<=20 

Reflns collected / unique 49167 / 4365 [R(int) = 0.0403] 

Reflns observed [F>4σ(F)] 3623 

Absorption correction Numeric analytical 

Max. and min. transmission 0.96739 and 0.90995 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4365 / 2 / 317 

Goodness-of-fit on F2 1.069 

Final R indices [F>4σ(F)] R1 = 0.0472, wR2 = 0.1068 

 R1+ = 0.0472, wR2+ = 0.1068 

 R1- = 0.0472, wR2- = 0.1070 

R indices (all data) R1 = 0.0628, wR2 = 0.1145 

Absolute structure parameter x+ = 0.1(3), x- = 0.9(3) 

 Absolute structure indeterminate, 

 Assigned by internal reference 

Extinction coefficient 0.0018(3) 

Largest diff. peak, hole 0.112, -0.104 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 

 
 
Bond lengths [Å] and angles [°] for CB0502b. 
 
N(1)-C(2) 1.310(2) 
N(1)-C(5) 1.474(2) 
C(2)-N(3) 1.316(2) 
C(2)-C(6) 1.469(3) 
N(3)-C(4) 1.461(3) 
C(4)-C(12) 1.507(3) 
C(4)-C(5) 1.566(3) 
C(5)-C(18) 1.508(3) 
C(6)-C(11) 1.379(3) 
C(6)-C(7) 1.386(3) 
C(7)-C(8) 1.369(3) 
C(8)-C(9) 1.357(3) 
C(9)-C(10) 1.371(3) 
C(10)-C(11) 1.380(3) 
C(12)-C(13) 1.370(3) 
C(12)-C(17) 1.375(3) 
C(13)-C(14) 1.389(4) 
C(14)-C(15) 1.348(4) 
C(15)-C(16) 1.355(5) 
C(16)-C(17) 1.386(4) 
C(18)-C(23) 1.364(3) 
C(18)-C(19) 1.374(3) 
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C(19)-C(20) 1.383(3) 
C(20)-C(21) 1.352(4) 
C(21)-C(22) 1.351(4) 
C(22)-C(23) 1.385(4) 
C(30)-O(31) 1.243(2) 
C(30)-O(32) 1.244(2) 
C(30)-C(33) 1.519(3) 
C(33)-O(34) 1.419(3) 
C(33)-C(35) 1.504(4) 
C(35)-C(36) 1.366(4) 
C(35)-C(40) 1.374(3) 
C(36)-C(37) 1.384(4) 
C(37)-C(38) 1.347(6) 
C(38)-C(39) 1.325(7) 
C(39)-C(40) 1.405(7) 
 
C(2)-N(1)-C(5) 111.87(14) 
N(1)-C(2)-N(3) 111.90(17) 
N(1)-C(2)-C(6) 123.88(16) 
N(3)-C(2)-C(6) 124.22(16) 
C(2)-N(3)-C(4) 111.74(15) 
N(3)-C(4)-C(12) 114.41(17) 
N(3)-C(4)-C(5) 102.14(14) 
C(12)-C(4)-C(5) 113.58(16) 
N(1)-C(5)-C(18) 112.77(15) 
N(1)-C(5)-C(4) 101.31(14) 
C(18)-C(5)-C(4) 115.26(16) 
C(11)-C(6)-C(7) 118.60(19) 
C(11)-C(6)-C(2) 120.93(17) 
C(7)-C(6)-C(2) 120.46(17) 
C(8)-C(7)-C(6) 120.2(2) 
C(9)-C(8)-C(7) 121.2(2) 
C(8)-C(9)-C(10) 119.2(2) 
C(9)-C(10)-C(11) 120.7(2) 
C(6)-C(11)-C(10) 120.1(2) 
C(13)-C(12)-C(17) 118.2(2) 
C(13)-C(12)-C(4) 123.6(2) 
C(17)-C(12)-C(4) 118.2(2) 
C(12)-C(13)-C(14) 121.4(3) 
C(15)-C(14)-C(13) 119.7(3) 
C(14)-C(15)-C(16) 119.7(3) 
C(15)-C(16)-C(17) 121.3(3) 
C(12)-C(17)-C(16) 119.6(3) 
C(23)-C(18)-C(19) 117.5(2) 
C(23)-C(18)-C(5) 121.32(19) 
C(19)-C(18)-C(5) 121.1(2) 
C(18)-C(19)-C(20) 120.8(2) 
C(21)-C(20)-C(19) 120.8(2) 
C(22)-C(21)-C(20) 119.1(3) 
C(21)-C(22)-C(23) 120.6(3) 
C(18)-C(23)-C(22) 121.2(3) 
O(31)-C(30)-O(32) 125.64(19) 
O(31)-C(30)-C(33) 116.97(19) 
O(32)-C(30)-C(33) 117.4(2) 
O(34)-C(33)-C(35) 111.01(19) 
O(34)-C(33)-C(30) 109.68(19) 
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C(35)-C(33)-C(30) 112.5(2) 
C(36)-C(35)-C(40) 117.0(3) 
C(36)-C(35)-C(33) 122.2(2) 
C(40)-C(35)-C(33) 120.7(3) 
C(35)-C(36)-C(37) 122.7(3) 
C(38)-C(37)-C(36) 118.1(5) 
C(39)-C(38)-C(37) 121.9(5) 
C(38)-C(39)-C(40) 120.0(4) 
C(35)-C(40)-C(39) 120.2(4) 
 

 

CB0601; 2,6-Di-[(4S,5S)-1-{(R)-α-acetoxyphenyl acetyl}-4,5-diphenyl-4,5-

dihydroimidazol-2-yl]iodobenzene (245) 

 
 

Crystal data and structure refinement for CB0601. 

 

Identification code CB0601 

Empirical formula C56 H45 I N4 O6 

Formula weight 996.86 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur 3, 0.71073 Å 

Crystal system, space group Monoclinic, P2 

Unit cell dimensions a = 10.1088(17) Å α = 90° 



 265

 b = 8.9540(15) Å β = 90.045(8)° 

 c = 13.6000(8) Å γ = 90° 

Volume, Z 1231.0(3) Å3, 1 

Density (calculated) 1.345 Mg/m3 

Absorption coefficient 0.705 mm-1 

F(000) 510 

Crystal colour / morphology Colourless blocks 

Crystal size 0.30 x 0.26 x 0.25 mm3 

θ range for data collection 3.76 to 31.97° 

Index ranges -14<=h<=15, -12<=k<=12, -19<=l<=20 

Reflns collected / unique 19882 / 7620 [R(int) = 0.0360] 

Reflns observed [F>4σ(F)] 7199 

Absorption correction Analytical 

Max. and min. transmission 0.87259 and 0.83704 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7620 / 1 / 306 

Goodness-of-fit on F2 1.075 

Final R indices [F>4σ(F)] R1 = 0.0223, wR2 = 0.0560 

 R1+ = 0.0223, wR2+ = 0.0560 

 R1- = 0.0389, wR2- = 0.1068 

R indices (all data) R1 = 0.0244, wR2 = 0.0565 

Absolute structure parameter x+ = 0.000(7), x- = 1.003(7) 

Extinction coefficient 0.0021(10) 

Largest diff. peak, hole 0.449, -0.461 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 

 
 
Bond lengths [Å] and angles [°] for CB0601. 
 
I-C(1) 2.0933(16) 
C(1)-C(2)#1 1.3962(14) 
C(1)-C(2) 1.3962(14) 
C(2)-C(3) 1.389(2) 
C(2)-C(5) 1.4937(17) 
C(3)-C(4) 1.3858(18) 
C(4)-C(3)#1 1.3858(18) 
C(5)-N(9) 1.2681(18) 
C(5)-N(6) 1.4156(15) 
N(6)-C(10) 1.3738(15) 
N(6)-C(7) 1.4803(15) 
C(7)-C(21) 1.5166(19) 
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C(7)-C(8) 1.5756(18) 
C(8)-N(9) 1.4754(19) 
C(8)-C(27) 1.514(2) 
C(10)-O(10) 1.2079(16) 
C(10)-C(11) 1.5443(18) 
C(11)-O(12) 1.4375(16) 
C(11)-C(15) 1.505(2) 
O(12)-C(13) 1.3568(16) 
C(13)-O(13) 1.2004(17) 
C(13)-C(14) 1.4900(19) 
C(15)-C(20) 1.388(2) 
C(15)-C(16) 1.395(3) 
C(16)-C(17) 1.393(3) 
C(17)-C(18) 1.376(4) 
C(18)-C(19) 1.358(4) 
C(19)-C(20) 1.404(3) 
C(21)-C(22) 1.381(3) 
C(21)-C(26) 1.392(2) 
C(22)-C(23) 1.395(2) 
C(23)-C(24) 1.379(3) 
C(24)-C(25) 1.371(4) 
C(25)-C(26) 1.406(3) 
C(27)-C(28) 1.396(3) 
C(27)-C(32) 1.397(2) 
C(28)-C(29) 1.391(3) 
C(29)-C(30) 1.386(4) 
C(30)-C(31) 1.383(5) 
C(31)-C(32) 1.400(3) 
 
C(2)#1-C(1)-C(2) 120.86(16) 
C(2)#1-C(1)-I 119.57(8) 
C(2)-C(1)-I 119.57(8) 
C(3)-C(2)-C(1) 119.15(13) 
C(3)-C(2)-C(5) 120.28(12) 
C(1)-C(2)-C(5) 120.52(12) 
C(4)-C(3)-C(2) 120.03(14) 
C(3)-C(4)-C(3)#1 120.73(18) 
N(9)-C(5)-N(6) 115.58(11) 
N(9)-C(5)-C(2) 122.49(11) 
N(6)-C(5)-C(2) 121.90(10) 
C(10)-N(6)-C(5) 125.89(10) 
C(10)-N(6)-C(7) 126.22(10) 
C(5)-N(6)-C(7) 107.81(9) 
N(6)-C(7)-C(21) 112.06(11) 
N(6)-C(7)-C(8) 100.79(10) 
C(21)-C(7)-C(8) 113.11(11) 
N(9)-C(8)-C(27) 111.07(12) 
N(9)-C(8)-C(7) 105.68(10) 
C(27)-C(8)-C(7) 113.41(13) 
C(5)-N(9)-C(8) 108.60(11) 
O(10)-C(10)-N(6) 122.99(11) 
O(10)-C(10)-C(11) 121.06(11) 
N(6)-C(10)-C(11) 115.90(10) 
O(12)-C(11)-C(15) 107.82(12) 
O(12)-C(11)-C(10) 107.48(11) 
C(15)-C(11)-C(10) 110.09(11) 
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C(13)-O(12)-C(11) 114.03(10) 
O(13)-C(13)-O(12) 122.31(12) 
O(13)-C(13)-C(14) 125.92(14) 
O(12)-C(13)-C(14) 111.77(12) 
C(20)-C(15)-C(16) 119.61(18) 
C(20)-C(15)-C(11) 120.14(17) 
C(16)-C(15)-C(11) 120.26(14) 
C(17)-C(16)-C(15) 119.4(2) 
C(18)-C(17)-C(16) 120.8(2) 
C(19)-C(18)-C(17) 119.97(19) 
C(18)-C(19)-C(20) 120.8(2) 
C(15)-C(20)-C(19) 119.5(2) 
C(22)-C(21)-C(26) 119.18(16) 
C(22)-C(21)-C(7) 121.38(13) 
C(26)-C(21)-C(7) 119.44(16) 
C(21)-C(22)-C(23) 120.77(19) 
C(24)-C(23)-C(22) 120.0(2) 
C(25)-C(24)-C(23) 119.78(18) 
C(24)-C(25)-C(26) 120.70(19) 
C(21)-C(26)-C(25) 119.5(2) 
C(28)-C(27)-C(32) 118.09(18) 
C(28)-C(27)-C(8) 120.38(15) 
C(32)-C(27)-C(8) 121.50(17) 
C(29)-C(28)-C(27) 121.6(2) 
C(30)-C(29)-C(28) 119.9(3) 
C(31)-C(30)-C(29) 119.4(2) 
C(30)-C(31)-C(32) 121.0(2) 
C(27)-C(32)-C(31) 120.1(2) 
 
Symmetry transformations used to generate equivalent atoms: 
#1 -x+1,y,-z+1 
 

 

CB0604; Di(2-bromo-2-phenyleth-1-yl) sulfite (268) 

 

 
 
 

 

Crystal data and structure refinement for CB0604. 
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Identification code CB0604 

Empirical formula C16 H16 Br2 O3 S 

Formula weight 448.17 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur PX Ultra, 1.54248 Å 

Crystal system, space group Monoclinic, I2/a 

Unit cell dimensions a = 23.8581(2) Å α = 90° 

 b = 5.529 Å β = 102.5260(10)° 

 c = 26.0239(3) Å γ = 90° 

Volume, Z 3351.20(5) Å3, 8 

Density (calculated) 1.777 Mg/m3 

Absorption coefficient 7.384 mm-1 

F(000) 1776 

Crystal colour / morphology Colourless platy needles 

Crystal size 0.18 x 0.15 x 0.09 mm3 

θ range for data collection 3.48 to 71.00° 

Index ranges -29<=h<=29, -6<=k<=5, -31<=l<=31 

Reflns collected / unique 34847 / 3214 [R(int) = 0.0343] 

Reflns observed [F>4σ(F)] 3080 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.50474 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3214 / 0 / 199 

Goodness-of-fit on F2 1.112 

Final R indices [F>4σ(F)] R1 = 0.0549, wR2 = 0.1393 

R indices (all data) R1 = 0.0566, wR2 = 0.1405 

Largest diff. peak, hole 1.919, -0.646 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 

 
 
Bond lengths [Å] and angles [°] for CB0604. 
 
S-O 1.482(6) 
S-O(11) 1.618(4) 
S-O(1) 1.624(4) 
O(1)-C(2) 1.450(7) 
C(2)-C(3) 1.451(9) 
C(3)-C(4) 1.526(8) 
C(3)-Br(3) 1.989(6) 
C(4)-C(9) 1.369(9) 
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C(4)-C(5) 1.379(10) 
C(5)-C(6) 1.391(9) 
C(6)-C(7) 1.386(8) 
C(7)-C(8) 1.372(9) 
C(8)-C(9) 1.364(9) 
O(11)-C(12) 1.447(7) 
C(12)-C(13) 1.476(8) 
C(13)-C(14) 1.534(8) 
C(13)-Br(13) 1.959(7) 
C(14)-C(19) 1.343(9) 
C(14)-C(15) 1.397(10) 
C(15)-C(16) 1.404(9) 
C(16)-C(17) 1.376(9) 
C(17)-C(18) 1.364(9) 
C(18)-C(19) 1.367(8) 
 
O-S-O(11) 108.3(3) 
O-S-O(1) 100.2(3) 
O(11)-S-O(1) 99.8(2) 
C(2)-O(1)-S 114.4(4) 
O(1)-C(2)-C(3) 109.0(5) 
C(2)-C(3)-C(4) 114.7(6) 
C(2)-C(3)-Br(3) 105.9(4) 
C(4)-C(3)-Br(3) 108.9(4) 
C(9)-C(4)-C(5) 118.8(5) 
C(9)-C(4)-C(3) 113.7(6) 
C(5)-C(4)-C(3) 127.5(6) 
C(4)-C(5)-C(6) 121.2(5) 
C(7)-C(6)-C(5) 118.7(6) 
C(8)-C(7)-C(6) 119.5(5) 
C(9)-C(8)-C(7) 121.2(6) 
C(8)-C(9)-C(4) 120.6(6) 
C(12)-O(11)-S 115.6(4) 
O(11)-C(12)-C(13) 108.0(5) 
C(12)-C(13)-C(14) 113.3(5) 
C(12)-C(13)-Br(13) 107.2(5) 
C(14)-C(13)-Br(13) 110.0(4) 
C(19)-C(14)-C(15) 119.7(5) 
C(19)-C(14)-C(13) 115.3(6) 
C(15)-C(14)-C(13) 125.0(6) 
C(14)-C(15)-C(16) 119.7(6) 
C(17)-C(16)-C(15) 118.9(6) 
C(18)-C(17)-C(16) 119.6(5) 
C(17)-C(18)-C(19) 121.6(6) 
C(14)-C(19)-C(18) 120.4(6) 
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CB0701; (1R*,2S*)-2-Bromo-1-chloro-1-phenylpropane (274) 

 

 
 

Crystal data and structure refinement for CB0701. 

 

Identification code CB0701 

Empirical formula C9 H10 Br Cl 

Formula weight 233.53 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur PX Ultra, 1.54248 Å 

Crystal system, space group Monoclinic, I2/a 

Unit cell dimensions a = 18.7196(5) Å α = 90° 

 b = 5.48830(10) Å β = 104.159(3)° 

 c = 19.2225(5) Å γ = 90° 

Volume, Z 1914.90(8) Å3, 8 

Density (calculated) 1.620 Mg/m3 

Absorption coefficient 7.877 mm-1 

F(000) 928 

Crystal colour / morphology Colourless needles 

Crystal size 0.24 x 0.02 x 0.02 mm3 

θ range for data collection 4.75 to 62.93° 

Index ranges -20<=h<=21, -6<=k<=5, -22<=l<=21 

Reflns collected / unique 3799 / 1508 [R(int) = 0.0188] 

Reflns observed [F>4σ(F)] 1270 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.67847 
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Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1508 / 21 / 131 

Goodness-of-fit on F2 1.101 

Final R indices [F>4σ(F)] R1 = 0.0278, wR2 = 0.0749 

R indices (all data) R1 = 0.0337, wR2 = 0.0773 

Largest diff. peak, hole 0.490, -0.228 eÅ-3 

Mean and maximum shift/error 0.000 and 0.001 

 
 
Bond lengths [Å] and angles [°] for CB0701. 
 
C(1)-C(2) 1.480(7) 
C(1)-C(4) 1.526(6) 
C(1)-Cl(1) 1.830(8) 
C(2)-C(3) 1.491(7) 
C(2)-Br(2) 1.975(6) 
C(4)-C(5) 1.3900 
C(4)-C(9) 1.3900 
C(5)-C(6) 1.3900 
C(6)-C(7) 1.3900 
C(7)-C(8) 1.3900 
C(8)-C(9) 1.3900 
C(1')-C(2') 1.500(8) 
C(1')-C(4') 1.520(7) 
C(1')-Cl(1') 1.820(8) 
C(2')-C(3') 1.608(11) 
C(2')-Br(2') 1.960(8) 
C(4')-C(5') 1.3900 
C(4')-C(9') 1.3900 
C(5')-C(6') 1.3900 
C(6')-C(7') 1.3900 
C(7')-C(8') 1.3900 
C(8')-C(9') 1.3900 
 
C(2)-C(1)-C(4) 117.7(4) 
C(2)-C(1)-Cl(1) 110.0(6) 
C(4)-C(1)-Cl(1) 106.9(5) 
C(1)-C(2)-C(3) 117.2(6) 
C(1)-C(2)-Br(2) 107.4(3) 
C(3)-C(2)-Br(2) 111.6(5) 
C(5)-C(4)-C(9) 120.0 
C(5)-C(4)-C(1) 116.1(4) 
C(9)-C(4)-C(1) 123.9(4) 
C(4)-C(5)-C(6) 120.0 
C(5)-C(6)-C(7) 120.0 
C(6)-C(7)-C(8) 120.0 
C(9)-C(8)-C(7) 120.0 
C(8)-C(9)-C(4) 120.0 
C(2')-C(1')-C(4') 115.4(5) 
C(2')-C(1')-Cl(1') 108.3(6) 
C(4')-C(1')-Cl(1') 109.5(6) 
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C(1')-C(2')-C(3') 106.5(7) 
C(1')-C(2')-Br(2') 107.3(5) 
C(3')-C(2')-Br(2') 106.0(7) 
C(5')-C(4')-C(9') 120.0 
C(5')-C(4')-C(1') 117.8(5) 
C(9')-C(4')-C(1') 122.2(6) 
C(4')-C(5')-C(6') 120.0 
C(5')-C(6')-C(7') 120.0 
C(8')-C(7')-C(6') 120.0 
C(7')-C(8')-C(9') 120.0 
C(8')-C(9')-C(4') 120.0 
 
 
 
CB0703; (2R)-5-Bromomethyl-3-oxa-2-methyl-δ-pentano-5-lactone (220) 

 

 

Crystal data and structure refinement for CB0703. 

 

Identification code CB0703 

Empirical formula C6 H9 Br O3 

Formula weight 209.04 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur 3, 0.71073 Å 

Crystal system, space group Orthorhombic, P2(1)2(1)2(1) 

Unit cell dimensions a = 6.94127(12) Å α = 90° 

 b = 8.74587(16) Å β = 90° 

 c = 12.6315(2) Å γ = 90° 

Volume, Z 766.83(3) Å3, 4 

Density (calculated) 1.811 Mg/m3 
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Absorption coefficient 5.306 mm-1 

F(000) 416 

Crystal colour / morphology Colourless needles 

Crystal size 0.34 x 0.14 x 0.03 mm3 

θ range for data collection 3.75 to 32.48° 

Index ranges -10<=h<=10, -13<=k<=13, -18<=l<=18 

Reflns collected / unique 25731 / 2658 [R(int) = 0.0697] 

Reflns observed [F>4σ(F)] 1876 

Absorption correction Analytical 

Max. and min. transmission 0.806 and 0.366 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2658 / 0 / 91 

Goodness-of-fit on F2 0.973 

Final R indices [F>4σ(F)] R1 = 0.0315, wR2 = 0.0642 

 R1+ = 0.0315, wR2+ = 0.0642 

 R1- = 0.0596, wR2- = 0.1506 

R indices (all data) R1 = 0.0558, wR2 = 0.0699 

Absolute structure parameter x+ = 0.000(10), x- = *** 

Largest diff. peak, hole 0.736, -0.540 eÅ-3 

Mean and maximum shift/error 0.000 and 0.001 

 
 
Bond lengths [Å] and angles [°] for CB0703. 
 
O(1)-C(2) 1.345(2) 
O(1)-C(6) 1.459(3) 
C(2)-O(2) 1.197(3) 
C(2)-C(3) 1.514(3) 
C(3)-O(4) 1.429(3) 
C(3)-C(7) 1.507(4) 
O(4)-C(5) 1.425(3) 
C(5)-C(6) 1.502(3) 
C(6)-C(8) 1.504(3) 
C(8)-Br 1.946(2) 
 
C(2)-O(1)-C(6) 120.16(16) 
O(2)-C(2)-O(1) 118.40(19) 
O(2)-C(2)-C(3) 121.10(19) 
O(1)-C(2)-C(3) 120.47(19) 
O(4)-C(3)-C(7) 107.58(17) 
O(4)-C(3)-C(2) 114.29(17) 
C(7)-C(3)-C(2) 111.1(2) 
C(5)-O(4)-C(3) 111.36(16) 
O(4)-C(5)-C(6) 107.67(18) 
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O(1)-C(6)-C(5) 109.68(16) 
O(1)-C(6)-C(8) 106.92(16) 
C(5)-C(6)-C(8) 117.07(19) 
C(6)-C(8)-Br 112.93(15) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


