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The mechanisms underlying the cytotoxic action of pure ful-
lerene suspension (nano-Cgp) and water-soluble polyhydroxylated
fullerene [Cgo(OH),] were investigated. Crystal violet assay for
cell viability demonstrated that nano-Cg, was at least three orders
of magnitude more toxic than Cgy(OH), to mouse 1.929 fibrosar-
coma, rat C6 glioma, and U251 human glioma cell lines. Flow
cytometry analysis of cells stained with propidium iodide (PI),
PI/annexin V-fluorescein isothiocyanate, or the redox-sensitive dye
dihydrorhodamine revealed that nano-Cgy caused rapid (observ-
able after few hours), reactive oxygen species (ROS)-associated
necrosis characterized by cell membrane damage without DNA
fragmentation. In contrast, Cg(OH), caused delayed, ROS-
independent cell death with characteristics of apoptosis, includ-
ing DNA fragmentation and loss of cell membrane asymmetry in
the absence of increased permeability. Accordingly, the anti-
oxidant N-acetylcysteine protected the cell lines from nano-Cgg
toxicity, but not Cg(OH), toxicity, while the pan-caspase inhi-
bitor z-VAD-fmk blocked Cgo(OH),-induced apoptosis, but not
nano-Cgy—-mediated necrosis. Finally, C4o(OH),, antagonized, while
nano-Cgy synergized with, the cytotoxic action of oxidative
stress—inducing agents hydrogen peroxide and peroxynitrite donor
3-morpholinosydnonimine. Therefore, unlike polyhydroxylated
Ceo that exerts mainly antioxidant/cytoprotective and only mild
ROS-independent pro-apoptotic activity, pure crystalline Cgo seems
to be endowed with strong pro-oxidant capacity responsible for
the rapid necrotic cell death.

Key Words: cytotoxicity; fullerene; Cgp; reactive oxygen species;
apoptosis; necrosis.

Water-soluble fullerene derivatives synthesized by attaching
various functional groups (—OH, —COOH, —NH,) to the fuller-
ene cage (Cgp) are promising candidates for many biomedical
applications, including cytoprotection, DNA photocleavage,
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enzyme inhibition, diagnostic imaging, and antimicrobial and
anticancer therapy (Bosi ef al., 2003). Due to electrochemical
features that enable reaction with cell-damaging reactive
oxygen species (ROS) such as superoxide (O3—) and hydroxyl
(°*OH) radicals, the fullerene core behaves as a free radical
sponge with a protective effect in experimental ROS-dependent
neuronal death, both in vitro and in vivo (Dugan et al., 1997,
2001; Lotharius et al., 1999). Polyhydroxylated fullerenes
[Cso(OH), ], also known as fullerols or fullerenols, are partic-
ularly efficient antioxidants, reducing ROS-mediated neuronal
death induced by engagement of glutamate receptors (Dugan
et al., 1996; Jin et al., 2000). Treatment with fullerols also
afforded protection against oxidative stress in the RAW 264.7
macrophage cell line and ischemia-reperfused rat lungs (Chen
et al., 2004), and significantly reduced doxorubicin toxicity
against human breast cancer cell lines (Bogdanovic et al.,
2004). On the other hand, fullerol itself caused RAW 264.7 cell
death (Chen et al., 2004) and suppressed proliferation of
human breast cancer cells in a cell line—dependent manner
(Bogdanovic et al., 2004). The mechanisms responsible for the
cytotoxic and cytostatic action of Cgy(OH), in these studies
were not investigated, while its antiproliferative effect on rat
vascular smooth muscle cells was apparently associated with
inhibition of protein tyrosine kinase activity (Lu et al., 1998).

Investigation of the biological properties of pure, under-
ivatized fullerene has been greatly hampered by its complete
lack of solubility in water. However, pure Cgo can be brought
into water by means of solvent extraction or simply by stirring
over time, which results in formation of water-stable aggre-
gates (Cheng et al., 2004; Deguchi et al., 2001). As the
unintentional generation of these aggregates in aqueous
environments is a possibility, their toxicological effects are of
great importance, particularly if Cgy finds widespread use in
consumer products. Recently, Sayes et al. (2004) described the
several orders of magnitude higher toxicity of pure Cg( against
human dermal fibroblasts and liver carcinoma HepG2 cells, in
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comparison with fullerol and other water-soluble fullerenes. In
a subsequent study, the same group reported that the cytotoxic
activity of Cgg colloid was mediated through ROS-mediated
cell membrane lipid peroxidation (Sayes et al., 2005). In
accordance with these data, a study performed in largemouth
bass revealed a significant lipid peroxidation in brains of this
aquatic species after 48 h of exposure to underivatized Cg
(Oberdorster, 2004).

While the markedly higher cytotoxicity of pure Cgo in
comparison with fullerol suggests distinct mechanisms for the
induction of cell death, the ability of pure or hydroxylated Cgq
to induce different types of cell death has not been directly
compared. Apoptosis and necrosis are two distinct forms of cell
death that have profoundly different implications for the sur-
rounding tissues (reviewed in Edinger and Thompson, 2004).
Apoptosis is characterized by chromatin condensation, activa-
tion of caspases, and fragmentation of DNA without plasma
membrane breakdown, followed by packaging of the deceased
cell into apoptotic bodies that are recognized and removed by
phagocytic cells in the absence of inflammation. On the other
hand, necrosis is typified by vacuolation of the cytoplasm,
breakdown of the plasma membrane, and release of cellular
contents and pro-inflammatory molecules, resulting in the
induction of inflammation around the dying cell. Gaining an
insight into the type of cell death (apoptotic or necrotic) is im-
portant for designing an effective therapeutic strategy against
cytotoxins, as apoptosis and necrosis apparently employ dif-
ferent mechanisms for cell killing. For example, inhibition of
the apoptotic cascade—initiating enzymes caspases usually
blocks apoptosis, while caspase-independent necrosis in some
cases can be forestalled by treatment with antioxidants
(Edinger and Thompson, 2004).

The toxicity of fullerenes is an important characteristic for
defining and constraining their possible biomedical applica-
tions, and a complete knowledge of the mechanisms underlying
fullerene-induced cell death is necessary for designing an
efficient therapeutic strategy for its alleviation. In the present
study, we examined the hypothesis that pristine and hydroxyl-
ated fullerenes might use distinct mechanisms for the induction
of cell death. To that effect, various tests have been employed
for analyzing the ability of pure and polyhydroxylated Cgq to
induce apoptotic or necrotic cell death, and to assess the invol-
vement of oxidative stress in the cytotoxicity of the two
fullerene-based agents.

MATERIALS AND METHODS

Preparation and characterization of colloid and hydroxylated
fullerene. For preparation of fullerene colloid in water, we used a Cgo/79 €X-
tract of carbon soot (79% Cgo, 20% C7o, 1% higher-order fullerenes) produced
by arc discharge (Markovic et al., 2003). Cgo/70 colloid (referred to as nano-Cg
for reasons of convenience) was produced by evaporating tetrahydrofuran
(THF) from a mixture of water and molecularly dispersed Cgo/70 in THF
(Sigma, St. Louis, MO), using the procedure first described by Deguchi et al.
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(2001) and modified by Fortner et al. (2005). The concentration of nano-Cgq
suspension in water was adjusted by evaporation to 10 pg/ml, as determined
from the absorption spectrum and using a gravimetric procedure. Polyhy-
droxylated fullerene, referred to as Cgo(OH),, was prepared as previously
described (Zhao et al., 2004) from the same Cgq,79 extract of carbon soot used
for the nano-Cg( preparation. Immediately after preparation, both nano-Cg, and
Ceo(OH),, were transferred to light-protected glass bottles and stored at 4°C
until used for experiments. Images of nano-Cg, were obtained upon evaporation
of diluted Cg( colloid suspension on a 400-mesh carbon-coated copper grid
and imaging with a Phillips (FEI Europe B. V., The Netherland) EN 401
transmission electron microscope at 120 kV. The particle size distribution of
fullerene colloid was obtained using a Brookhaven Instruments (Holtsville, NY)
light-scattering system equipped with a BI-200SM goniometer, a BI-9000AT
correlator, a temperature controller, and a Coherent INNOVA 70C argon-ion
laser. Dynamic light-scattering measurements were performed using 135 mW
laser excitation on 514.5 nm at a 90° detection angle, and particle size
distribution was calculated using a Brookhaven Instruments particle-sizing
software. For the Fourier transform infrared (FTIR) spectroscopy analysis,
nano-Cg suspension and Cgo(OH),, solution were dried on silicon wafers until
thin films were formed. FTIR spectra were measured at room temperature in the
spectral range from 400 to 4000 cm ™', on a BOMEM spectrometer.

Cell Lines. The mouse fibrosarcoma cell line L.929 was obtained from
the European Collection of Animal Cell Cultures (Salisbury, UK), while the
rat glioma cell line C6 and the human glioma cell line U251 were kindly
donated by Dr Pedro Tranque (Universidad de Castilla-La Mancha, Albacete,
Spain). The cell lines were maintained at 37°C in a humidified atmosphere with
5% CO,, in a HEPES (20mM)-buffered RPMI 1640 cell culture medium
(Sigma) supplemented with 5% fetal calf serum, 2mM L-glutamine, S0uM
2-mercaptoethanol, 10mM sodium pyruvate, and 100 IU/ml penicillin and
streptomycin (all from Sigma).

Experimental design. The cells were prepared for experiments using the
conventional trypsinization procedure with trypsin/EDTA and incubated in flat-
bottom 96-well or 6-well cell culture plates (Sarstedt, Newton, NC) for the cell
viability assessment or flow cytometry/lipid peroxidation analysis, respectively.
Cells (>95% viable, as determined by trypan blue staining) were seeded at
arate of 1 X 10* per well (96-well plates) and 5 X 10 per well (6-well plates)
for the short-term treatment (0.5-4 h), or at 0.5 X 10* per well (96-well plates)
and 2.5 X 10° per well (6-well plates) for the long-term treatment (18-24 h).
After being rested for 18 h, cell cultures were washed to remove the small
number of nonadherent dead cells (<5%) and incubated in 200 pl (96-well
plates) or 4 ml (6-well plates) of cell culture medium. Cells were incubated
alone (control), or treated with fullerenes, antioxidant N-acetylcysteine (NAC),
pro-oxidants hydrogen peroxide and 3-morpholinosydnonimine (SIN-1), or
pan-caspase inhibitor z-VAD-fmk (all from Sigma), as described in detail in
Figures 2-5. To avoid photoexcitation of fullerenes, we tried to minimize their
exposure to ambient light, while all cell incubations were performed in the
dark. Cells were cultivated under conditions described in the previous section,
and cell culture conditions were identical for all cell lines. All treatments in
each experiment were performed and analyzed in triplicates, except for the flow
cytometry analysis in which single cultures were analyzed. Each experiment
was done at least three times.

Determination of cell viability and lactate dehydrogenase release. For
the assessment of cell viability, we used the crystal violet assay, which is based
on the inability of dead cells to remain adherent to cell culture plastic (Flick and
Gifford, 1984). After incubation, cells were washed with PBS to remove dead,
nonadherent cells. The remaining adherent, viable cells were fixed with
methanol and stained with 1% crystal violet solution at room temperature for
10 min. The plates were thoroughly washed with water, and crystal violet was
dissolved in 33% acetic acid. The absorbance of dissolved dye, corresponding
to the number of viable cells was measured in an automated microplate reader
at 570 nm. The release of intracellular enzyme lactate dehydrogenase (LDH), as
a marker of cell membrane damage, was determined exactly as previously
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Characterization of nano-Cgy and Cgo(OH),. (A) Images of nano-Cgq crystals obtained by transmission electron microscopy. (B) Particle size

distribution of nano-Cg aggregates in water. Five thousand particles have been analyzed, and the highest number of particles (corresponding to a diameter of
96.3 nm) was normalized to 100. (C) UV/Vis spectra of nano-Cgg (10 pg/ml) and Cgo(OH),, (1000 pg/ml). (D) FTIR spectra of nano-Cgo and Cgo(OH),,. The arrows

indicate characteristic peaks at 526, 575, 1070, 1182, and 1608 em™.

described (Kaludjerovic et al., 2005). The results of both crystal violet and
LDH release assays were presented as a percent of the control value obtained in
untreated cells.

Detection of apoptosis and necrosis. Apoptotic cell death and necrotic
cell death were analyzed by double staining with annexin V-fluorescein
isothiocyanate (FITC) and propidium iodide (PI), in which annexin V bound to
the apoptotic cells with exposed phosphatidylserine, while PI labeled the
necrotic cells with a membrane damage. Staining was performed according to
the instructions from the manufacturer (BD Pharmingen, San Diego, CA), and
flow cytometry was conducted on a FACSCalibur flow cytometer (BD
Pharmingen). DNA fragmentation, another apoptotic marker that is not
characteristic for necrotic cells, was assessed by a flow cytometric analysis
of ethanol-fixed cells stained with PI as previously described (Kaludjerovic
et al., 2005). The percentage of apoptotic (annexin*/PI™ or PI'®" hypodiploid
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cells in sub-G; fraction) and necrotic (annexin/PI") cells was determined
using CellQuest Pro software.

Measurement of ROS generation and lipid peroxidation. The produc-
tion of oxygen radicals was determined by measuring the intensity of green
fluorescence emitted by the redox-sensitive dye dihydrorhodamine 123 (DHR)
upon excitation at 488 nm. DHR (Sigma) was added to cell cultures 10 min
prior to fullerene treatment at a concentration of 1uM. At the end of incubation,
cells were detached by trypsinization and washed in PBS, and the fluorescence
intensity in treated cells was analyzed using a FACSCalibur flow cytometer
with a 488-nm argon laser. Alternatively, DHR fluorescences in nano-
Cgo—treated cell cultures and the cell-free suspension of nano-Cg in the cell
culture medium were compared using a fluorescence microplate reader
(Chameleon, Hidex, Finland) equipped with a 488-nm excitation filter and a
535-nm emission filter. Lipid peroxidation was measured using the colorimetric
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A L929 thiobarbituric acid assay for malondialdehyde (MDA), as previously described
(Losa, 2003).
—&— C6
nano-Ce, Cgo(OH), A— U251

Analysis of synergism and antagonism in cytotoxic interactions. To
analyze the type (additive, synergistic, or antagonistic) of fullerene interaction
with the pro-oxidant agents H,O, and SIN-1, or the interaction between nano-
Cgo and Cgo(OH),, in inducing tumor cell death, cells were treated with each
agent alone and in combination. Six twofold dilutions were made from the
starting concentrations of 0.5 pg/ml nano-Cgp, 800 pg/ml Ceo(OH),, ImM
H,0,, and ImM SIN-1, and the cytotoxic effect of each dose alone, as well as
its combination with the corresponding dose of appropriate agent, was tested
using the crystal violet assay. The results were expressed as a percent of
cytotoxic efficiency, and a combination index (CI) for mutually exclusive or
mutually nonexclusive interactions was calculated according to the method
designed by Chou and Talalay (1984). CI values = 1, <1, or >1 indicate
additive, synergistic, or antagonistic interactions, respectively.
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Statistical analysis. The statistical significance of the observed differences
1 was analyzed by z-test or ANOVA followed by the Student-Newman-Keuls test.
0.01 0.1 1 10 100 1000 A p value < 0.05 was considered significant.
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gates of approximately 100 nm (Fig. 1A). This is consistent
with the results of dynamic light-scattering measurements,
which determined the average particle size to be 96.3 nm
(Fig. 1B). The dynamic light-scattering analysis of Cgo(OH),
showed that all particles were <5 nm (the detection limit), thus
confirming the absence of Cgy(OH), aggregation (data not

=) i“ ; SOV 3 shown). The UV/Vis absorbance spectra of nano-Ceo and

‘r ?“\-‘3 /)'\ j "rJ {}\ UD Cgo(OH),, in Figure 1C indicate that fullerol does not have

con:;ol ) naniélo il pronounced absorption bands in the UV region like nano-Ce.

Importantly, the spectra of our fullerene preparations are iden-

c ———r tical to the previously published spectra of similarly prepared

et al., 2005). The FTIR spectra of nano-Cgy and Cgo(OH),, show
characteristic vibrational modes of Cgq at 526, 575, and 1182
cm ! (Kuzmany et al., 1995), as indicated by the arrows in
Figure 1D. Expectedly, Cs(OH), has two broad absorption
bands at about 1070 and 1608 cm ™', which reflect the presence
of C-0 and O-H covalent bonds, respectively. However, both
bands were also found in the nano-Cg( spectrum, which is con-
sistent with the data that some degree of derivatization appa-
rently occurs at the surface of nano-Cgq crystals (Sayes et al.,
2005). A strong absorption band at 860 cm ™' in the FTIR
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presence of nano-Cgo and Cgo(OH),, at different concentrations, and the cell corresponding means), while the values in C are mean = SD of triplicate

viability was assessed by crystal violet staining. (B) Light micrographs of  measurements and are representative of three experiments (*p < 0.05).
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FIG. 3. Pure and hydroxylated Cgq, induce different types of cell death.
(A-D) U251 cells were incubated without (control) or with 1000 pg/ml
Cgo(OH),, for 24 h (A, C) or with 1 ng/ml nano-Cg for 6 h (B, D). The number
of cells staining with annexin V-FITC and/or PI (A, B), or those with frag-
mented DNA (PI'™ sub-G, fraction) (C, D), was assessed by flow cytometry.
(E) The cytotoxicity of nano-Cgq (1 pg/ml) and Cgo(OH),, (1000 pg/ml) toward
U251 cells was investigated after 24-h incubation in the absence or presence of
the pan-caspase inhibitor z-VAD-fmk (0.5uM). The values in A-D are means +
SD from three separate experiments, while those in E are mean + SD of
triplicates and are representative of three experiments (*p < 0.05).

while the peaks observed in the region between 1200 and 1550
cm ! originate from the silicon substrate.

Nano-Cgp and Cgso(OH), Differ in the Efficacy and Kinetics
of Their Cytotoxic Action

In the preliminary experiments, we used cells of differ-
ent types and origin (rat primary astrocytes and fibroblasts,
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rat/mouse peritoneal macrophages, C6 rat astrocytoma, U251
human glioma, and L1929 mouse fibrosarcoma cell line) to
investigate if fullerenes might exert cell-selective toxicity. How-
ever, repeated experiments in which the cell viability after 24-h
incubation was evaluated by the crystal violet assay clearly
demonstrated that the toxicity of nano-Cgy and Cgo(OH),, was
neither species/cell type specific, nor selective for primary or
transformed cells (data not shown). Having established that,
for reasons of convenience and reproducibility, we used well-
defined transformed cell lines (C6, U251, and 1.929) to deli-
neate the cytotoxic mechanisms of the two different fullerene
preparations. To compare the cytotoxic efficiencies of nano-Cg
and Cgo(OH),, different doses of each agent were incubated
with the 1.929, C6, or U251 cell line, and the number of
adherent, live cells was assessed by crystal violet staining after
24 h. In accordance with the results of Sayes er al. (2005), the
data presented in Figure 2A clearly show that pristine fullerene
was at least three orders of magnitude more toxic to the tested
cell lines than its hydroxylated counterpart [LCsy values were
0.25 pg/ml and 800-1000 pg/ml for Cgy and Cgo(OH),,
respectively]. Microscopic examination revealed a dramatic
change in the morphology of nano-Cgp—treated cells. In contrast
to control cells, nano-Cggp—treated cells lost their processes and
became round and detached from the culture well surface after
only 6 h of treatment (Fig. 2B). The observed morphological
changes followed by cell detachment were indicative of rapid
cell death. Accordingly, the crystal violet analysis of cell
viability at various time points following nano-Cgo addition
revealed an extremely fast kinetics of its cytotoxic action,
reaching almost maximal efficiency after 6 h of cultivation
(Fig. 2C, line). In the same time range, Cgo(OH),, failed to cause
any discernible changes in cellular morphology (data not
shown) or to induce cell death (Fig. 2C, bars). Therefore,
pristine Cgo was a much faster and more efficient cytotoxic
agent than its hydroxylated derivative. Importantly, the cyto-
toxic activity of crystalline Cgy was completely unrelated to the
residual amount (<10% wt/wt) of organic solvent intercalated
into its lattice (Sayes et al., 2005), as THF was without any
toxic effect (data not shown) even at concentrations 100-fold
higher (10 pg/ml) than its estimated residual presence (1 pg/ml
nano-Cg contains <0.1 pg/ml THF).

Nano-Cgp and Cso(OH),, Induce Distinct Types of Cell Death

In the following experiments, we compared the ability of
nano-Cgp and Cgy(OH),, to induce apoptotic or necrotic cell
death. To discriminate between the two distinct types of cell
death, we used double staining with annexin V-FITC and PI.
Annexin V binds to the phosphatidylserine that is typically
exposed at the outer side of cell membrane during apoptosis,
while PI only enters the cells with membrane damage that
occurs in necrotic cell death. Therefore, normal, healthy cells
are annexin /PI™ (Fig. 3A, 3B, lower left quadrant), apoptotic
cells express phosphatidylserine, but have preserved membrane
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FIG.5. Hydroxylated Cgo antagonizes, and nano-Cg cooperates with, the cytotoxic action of H,O, and SIN-1. (A, B) Viability of 1929 cells exposed for 24 h
to various doses of H,O, (A) or SIN-1 (B), in the presence or absence of nano-Cgq (0.25 pg/ml) or Co(OH),, (250 pg/ml). (C) Viability of L929 cells treated for 24 h
with different concentrations of nano-Cgy, in the presence or absence of Cgo(OH),, (250 pg/ml). (D-F) The interaction of nano-Cgg and Ceo(OH),, with H,O, (D) or
SIN-1 (E), as well as the interaction of nano-Cgo and Cgo(OH),, (F) in causing 1929 cell death was assessed by Chou-Talalay analysis as described in the ‘“Materials
and Methods™ section. The results in A—C are presented as mean + SD of triplicate observations and are representative of at least three experiments, while the CI
values in D-F are means + SD from four separate experiments (*p < 0.05 in A—C refers to the corresponding H,O,-, SIN-1-, or nano-Cgp—treated cultures, while
*p < 0.05 in D-F indicates significant antagonism [CI > 1] or synergism [CI < 1]).

integrity (annexin™/PI; lower right quadrant), while necrotic
cells with damaged membrane stain for both annexin V and PI
(annexin*/PI"; upper right quadrant). The results presented in
Figures 3A and 3B clearly show that the treatment of U251
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cells with C¢o(OH), led to a significant increase in the number
of apoptotic, but not necrotic, cells (Fig. 3A), while nano-Cg
caused a massive increase in the number of necrotic, but
not apoptotic, cells (Fig. 3B). The analysis of cellular DNA
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content, which is reduced in apoptosis due to DNA fragmen-
tation, was consistent with the data from annexin/PI staining.
Namely, the number of hypodiploid, presumably apoptotic,
cells with fragmented DNA (sub-G; fraction of PI-stained
cells) markedly increased upon the treatment of U251 cells
with fullerol (Fig. 3C), while pristine fullerene was without
effect (Fig. 3D). Similar results were obtained with C6 and
L929 cells (data not shown). The ability of nano-Cg to cause
cell membrane damage indicative of necrosis was also con-
firmed by a significant increase in LDH release (159 + 15%,
n = 3, p < 0.05), which was not observed after Cgo(OH),,
treatment. Due to a difference in the kinetics of cytotoxic
action of Cgo(OH),, and nano-Cg , the assessment of apoptosis/
necrosis presented in Figures 3A and 3C and Figures 3B and
3D was performed after 24 and 6 h, respectively. It should be
noted, however, that the appearance of annexin™ cells in nano-
Ceo—treated cultures could not be observed even at earlier
time points (0.5-4 h; data not shown), which excluded the
possibility that some early apoptotic events were overlooked.
Finally, we used z-VAD-fmk, a pharmacological inhibitor of
caspase activation and subsequent apoptotic cell death, to
evaluate the role of apoptosis in fullerene-mediated cytotoxic-
ity. In accordance with the data presented in Figures 3A-3D,
z-VAD-fmk exerted a significant protective effect in Cgo(OH),-
treated U251 cultures, but completely failed to rescue U251
cells from the toxicity of nano-Cg (Fig. 3E). Therefore, pure
Ceo and Cgn(OH), apparently employ distinct cytotoxic
mechanisms resulting in the preferential induction of cas-
pase-independent necrosis and caspase-dependent apoptosis,
respectively.

Cytotoxicity of Nano-Cgg, but Not Cso(OH),,, Depends
on ROS Generation

We next investigated the involvement of oxidative stress in
the observed cytotoxic action of nano-Cgy and Cgo(OH),,. The
treatment of C6 cells with C¢o(OH),, for 18 h failed to induce
detectable intracellular production of ROS, as judged by un-
altered intracellular DHR fluorescence (Fig. 4A, lower panel).
On the other hand, a considerable increase in DHR fluores-
cence was observed in C6 cells after 3 h of incubation with
pristine Cgq (Fig. 4A, upper panel), indicating a significant
intracellular generation of ROS. It should be noted that a shorter
time course was chosen for nano-Cgq because of the prompt-
ness of its cytotoxic action. Nevertheless, the inability of
Ceo(OH),, to generate ROS was confirmed in the experiments in
which the incubation time was reduced from 18 hto 3 or 6 h
(data not shown). We used a powerful antioxidant agent, NAC
(Zafarullah et al., 2003), to examine the role of ROS pro-
duction in fullerene-mediated cytotoxicity. While NAC was
completely unable to prevent Cgo(OH),-mediated tumor cell
killing (Fig. 4B), it markedly downregulated the production of
oxygen radicals and completely prevented viability loss,
induction of necrosis (measured as number of annexin®/PI*
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cells), and LDH release associated with nano-Cg treatment
(Fig. 4C). Moreover, an increase in MDA levels in C6 cells,
reflecting membrane lipid peroxidation, was readily observed
upon addition of nano-Cgy and efficiently blocked by NAC
treatment (Fig. 4C). The protective effect of NAC was also
observed in U251 and L929 cells, and lasted for at least 24 h, as
demonstrated by crystal violet staining (data not shown) and
the completely preserved morphology of cells treated with
nano-Cg (Fig. 4D). Because fluorescence-activated cell sorting
analysis could not distinguish cell-derived from nano-Cgy—
produced oxygen radicals, we used a fluorescence microplate
reader to detect DHR fluorescence in cell-free nano-Cgg
suspension. However, the results presented in Figure 4E show
that the time-dependent increase in DHR fluorescence in nano-
Cgo—treated C6 cultures was slightly less pronounced than that
observed in the absence of cells. Therefore, it appears that
intracellular increase in ROS production was not a cellular
response to nano-Cg, treatment, but rather depended on the
ability of pristine fullerene to directly generate oxygen
radicals. Collectively, these results suggest that nano-Cego—
produced oxygen radicals are involved in lipid peroxidation
and the consequent necrotic cell death, while Cgo(OH),-
triggered apoptosis seems to be ROS independent.

Nano-Cgy and Cso(OH),, Differently Cooperate with the
Cytotoxic Action of Oxidative Stress—Inducing Agents

Having demonstrated that the cytotoxicity of nano-Cgg, but
not Cgo(OH),,, depends on production of oxygen radicals, we
wanted to examine if these fullerene preparations could in-
fluence the toxicity of other ROS-generating agents. To that
effect, we assessed the cytotoxic effects of simultaneous
application of nano-Cg or Cgo(OH),, with hydrogen peroxide
and peroxynitrite donor SIN-1, the agents well known for their
ability to induce oxidative stress—mediated cell death (Bauer
etal., 1998; Wang and Joseph, 1999). In contrast to pristine Cg,
Ceo(OH),, significantly improved the viability of L929 cells
treated with H>O, or SIN-1 (Figs. 5A and 5B). We next sought to
confirm these observations by using mathematical analysis of
drug interaction based on the approach by Chou and Talalay
(1984). As shown in Figures 5D and SE, the CI for combination
of Cgo(OH),, with H,O, or SIN-1 was > 1 throughout the 0.1-
0.99 efficiency range, thus confirming the putative ability of
hydroxylated fullerene to antagonize the cytotoxic action of
both agents. On the other hand, the CI for combination of nano-
Ceo with H>O, or SIN-1 was around or less than 1 (Figs. 5D and
5E), indicating additive/synergistic cooperation in killing L.929
cells. Similar results were obtained with U251 and C6 cells
(data not shown). These data suggest that pure Cg cooperates
with, while its hydroxylated derivative antagonizes, the cyto-
toxic action of oxidative stress—inducing agents. Interestingly,
Ces0(OH),, readily antagonized the oxidative stress—dependent
cytotoxicity of Cgo nanocrystals (Figs. 5C and 5F), thus further
reinforcing the concept of cell-damaging/pro-oxidant versus
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cytoprotective/antioxidant activity of pristine fullerene and its
hydroxylated counterpart, respectively.

DISCUSSION

The present study describes the rapid ROS-dependent, caspase-
independent necrotic cell death that occurs within only few hours
of exposure to pure buckminsterfullerene aggregates (nano-Cep).
On the other hand, polyhydroxylated Cg, caused delayed,
ROS-independent, caspase-mediated apoptosis. It should be
noted that the observed toxic effects were not restricted to the
transformed cell lines, as similar results were obtained in primary
rat astrocytes and fibroblasts, as well as in rat and mouse peri-
toneal macrophages (Isakovic et al., unpublished observation).

While cytotoxic/antiproliferative effects of pristine Cgy and
its various water-soluble derivatives, including C¢y(OH),,, have
been observed in different experimental systems (Bogdanovic
et al.,2004; Bosi et al., 2004; Chen et al., 2004; Lu et al., 1998;
Mashino et al., 2003; Sayes et al., 2004, 2005; Tsuchiya et al.,
1996; Yang et al., 2002), their capacity for preferential
induction of apoptosis or necrosis has not been compared.
Although the release of LDH observed after 48-h incubation of
human dermal fibroblasts, astrocytes, or liver carcinoma cells
with nano-Cg (Sayes et al., 2005) is consistent with necrotic
cell death, secondary necrosis following an initially apoptotic
death could not be excluded. A line of evidence from the
present study, including the results of cell membrane asym-
metry/integrity assessment by annexin V/PI staining or LDH
release test, as well as the data from DNA fragmentation
analysis, clearly demonstrate that cell death induced by nano-
Ceo and Cgo(OH),, proceeds exclusively through the necrotic
and apoptotic pathways, respectively. Since aspartate-specific
cysteine proteases, termed caspases, are apparently required for
apoptotic, but not necrotic, cell death (Ferrari et al., 1999; Los
et al., 2002), the protective effect of caspase inhibition in
Ceo(OH),-treated cells, but not Cgo-treated cells, further
supports the view that pristine fullerene induces necrotic cell
death, as opposed to the mainly pro-apoptotic activity of its
hydroxylated derivative. The mode of cell death might pro-
foundly influence the healing of the surrounding tissue, since
necrotic cell products could initiate additional injury by
promoting inflammation (Jaeschke et al., 2002). On the other
hand, in view of the immunostimulatory properties of necrotic
cells and resistance of tumor cells to apoptosis, it has been
proposed that necrosis might be more efficient than apoptosis
in inducing tumor regression (Edinger and Thompson, 2004;
Galluci et al., 1999; Reiter et al., 1999). Therefore, the ability
to rapidly induce necrotic, rather than apoptotic, cell death
could pose a difficulty for counteracting the toxicity of
nanocrystalline Cgp, as well as potentially increase its effi-
ciency in cancer therapy.

By using the redox-sensitive fluorescent dye DHR, MDA
measurement, and cell incubation with the well-known antiox-
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idant agent NAC, we have shown that nano-Cgy—induced
necrosis was exclusively a consequence of oxidative stress that
probably resulted in lipid peroxidation—mediated damage of the
cell membrane. The putative involvement of oxygen radicals in
nano-Cgp—induced necrosis is consistent with the ability of
another antioxidant, L-ascorbic acid, to completely prevent lipid
peroxidation and ensuing cell death in nano-Cgo—treated
cultures of human dermal fibroblasts, described recently by
Sayes et al. (2005). Based on their observation that Cgq
nanocrystals generate superoxide anions in a cell-free system
(Sayes et al., 2004), the authors assumed that this feature of
nano-Cgy could be solely responsible for the induction of
oxidative stress and subsequent cell death. However, it was
not possible to conclude from these studies whether the target
cells contributed to production of oxygen radicals in response to
treatment with pure Cgo. By comparing the nano-Cgp—evoked
increase in DHR fluorescence in tumor cell cultures and cell-free
solution, we have been able to provide some direct evidence in
support of the hypothesis by Sayes et al. (2004), as the cells
themselves apparently did not contribute to ROS generation in
our experiments. Moreover, we have demonstrated a slight, but
significant, decrease in the ability of nano-Cg, to generate
oxygen radicals in the presence of cells, which might be
a consequence of the cellular antioxidative defense. Indeed, it
has been shown that cells increase their production of antiox-
idant glutathione in response to oxidative stress induced by
exposure to pristine Cg (Sayes et al., 2005). However, it still
remains to be established if ROS production and subsequent
damage were limited to cell membrane, or nano-Cgq could
somehow gain access to the cell cytoplasm.

In contrast to nano-Cgo—triggered necrosis, apoptosis induced
by Ceo(OH),, proceeded entirely in a ROS-independent fashion.
Furthermore, Cgo(OH),, significantly antagonized the cytotoxic
action of the oxidative stress—inducing agents H,O, and
peroxynitrite donor SIN-1, as demonstrated by the Chou-
Talalay approach. This is consistent with the previously reported
ability of Cgy(OH),, to prevent oxidative stress and subsequent
cell death in various experimental settings (Chen et al., 2004;
Dugan et al., 1996; Jin et al., 2000; Murugan et al., 2002; Tsai
et al., 1997), supporting a general view that C4,(OH), mainly
acts as a ““free radical sponge” with only mild cytotoxic activity
(Bosi et al., 2003). On the other hand, the present study
confirmed the recently described capacity of nanocrystalline
Ceo to generate oxygen radicals in cell-free systems (Sayes
et al.,2004), while extending this observation by demonstrating
ROS production in nano-Cgy—treated cells. This pro-oxidant
activity might account for our novel finding that pristine Cg, in
contrast to its hydroxylated derivative, readily cooperated in
a synergistic fashion with H,O, and peroxynitrite in the
induction of cell death. It seems conceivable to assume that
the mechanisms underlying the pro- versus antioxidant effects
of pristine and hydroxylated fullerene might be related to dif-
ferences in their chemical structures. Namely, the transmission
electron microscopy images and light-scattering measurements
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obtained in the present study confirm that a substantial fraction
of pristine Cg, unlike the fullerene core in intentionally water-
solubilized derivatives, is contained in the interior of the
nanocrystalline aggregates of approximately 90-100 nm in size
(Fortner et al., 2005; Sayes et al., 2004). As a consequence, Cgq
in such conditions remains largely underivatized (>99%), and
its high toxicity is therefore consistent with the finding that ROS
generation and cytotoxicity decrease with increasing derivati-
zation of the fullerene cage (Sayes et al., 2004). However, it
remains to be revealed how this structural difference could lead
to distinct oxidant and cytotoxic properties. To further empha-
size the complexity of the oxidant behavior of fullerenes in
biological systems, we note that even polyhydroxylated full-
erenes could generate oxygen radicals under certain circum-
stances (e.g., upon photosensitization) (Kamat et al., 1998,
2000). On the other hand, the ability of nano-Cgq to produce
ROS does not seem to depend on the presence of light (Sayes
et al.,2004), which is consistent with our results that exposure to
visible light or UV did not affect the cytotoxicity of nano-Cgg
(unpublished data).

In contrast to the mainly antioxidant/cytoprotective and only
mild ROS-independent pro-apoptotic activity of polyhydroxy-
lated Cg, the present study clearly demonstrates the ability of
pure crystalline Cgg to induce rapid ROS-dependent necrosis
and to synergistically enhance the cytotoxicity of other oxi-
dative stress—inducing agents. This is consistent with a recent
study in which the presence of pristine Cgy in water caused
lipid peroxidation—-mediated damage to fish brain (Oberdorster,
2004), but the possible relevance of our findings for the in vivo
toxicity of nano-Cg is still to be investigated. While the
difference in the cytotoxic mechanisms of pure versus hydrox-
ylated Cg, suggests distinct remediation for their unwarranted
biological effects, their divergent cytotoxic/cytoprotective
properties also provide grounds for the development of full-
erenes as either cytoprotective or anticancer therapeutics.
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