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Cytokinins play an important role in vascular development. But knowledge on the
cellular localization of this growth hormone in the stem and other organs of woody
plants is lacking. The main focus of this study was to investigate the occurrence
and cellular localization of active cytokinins in leaves, roots, and along the stem of
Populus x canescens and to find out how the pattern is changed between summer
and winter. An ARR5::GUS reporter construct was used to monitor distribution of active
cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested
under outdoor conditions showed no influence of ARRS::GUS reporter construct on the
growth performance compared with the wild-type, but one line lost the reporter activity.
ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern
of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS
activity, which was present in the root tips in the growing season, disappeared in winter.
In the stem apex ground tissue, ARRS5.::GUS activity was higher in winter than in summer.
Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity.
Leaf primordia in summer showed ARRS::GUS activity, but not the expanded leaves of
outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent
ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer
and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in
the dormant than in growth phase. The pith and the ray cells adjacent to the vessels
also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression
patterns of the whole PtRR type-A family of poplar showed that PtRR70, the closest
ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in
all tissues. In conclusion, gene expression and tissue-localization indicate high activity
of cytokinins not only in summer, but also in winter. The presence of the signal in
meristematic tissues supports their role in meristem maintenance. The reporter lines
will be useful to study the involvement of cytokinins in acclimation of poplar growth to
stress.
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INTRODUCTION

Cytokinins are adenine derivatives that act as master regulators
of plant growth and development. They are synthesized mainly
in the root tips (Dieleman et al., 1997; Miyawaki et al., 2004;
Aloni et al., 2005), but also locally in shoot tissues (Sakakibara,
2006; Tanaka et al., 2006; Hirose et al., 2008; Kamada-Nobusada
and Sakakibara, 2009). Root-derived cytokinins are transported
acropetally through xylem sap by the transpirational pull (Aloni
et al, 2005), while shoot-derived cytokinins are transported
through phloem (Bishopp et al., 2011). Active and inactive forms
of cytokinins occur as free bases and as ribosides, ribotides, or
glucose conjugates, respectively (Mok and Mok, 2001; Romanov
et al., 2006).

Cytokinins have roles in almost all aspects of plant growth
and development including cell division, shoot initiation and
growth, sink/source relationships, nutrient uptake, breaking of
bud dormancy, delay of leaf senescence, and regulation of
vascular development (Hwang et al., 2012; Kieber and Schaller,
2014). Cytokinins determine vascular cell identities, except those
of the protoxylem (Méhonen et al., 2000; Hutchison et al., 2006;
Yokoyama et al., 2007; Argyros et al.,, 2008) and promote the
development of vascular cambium (Matsumoto-Kitano et al.,
2008; Nieminen et al., 2008). Cytokinins specify the vascular
pattern by regulating the level of PIN auxin efflux proteins
(Bishopp et al., 2011). Cytokinins increase the sensitivity of the
cambium to the auxin signal thereby determining wood quantity
and quality (Aloni, 1991, 2001).

Cytokinin perception and signaling in plants has been
extensively studied in Arabidopsis and involves a His-Asp
phosphorelay that mediates the signal transmission (Mizuno,
2005; Schaller et al., 2008). Among the response regulators in
this pathway, type-A ARRs (Arabidopsis Response Regulators),
i.e., genes which contain the highly conserved Lys and two Asp
residues in their receiver domains, are the primary response
genes for cytokinins (D’Agostino et al., 2000). Ten type-A ARR
genes are described in Arabidopsis (ID’Agostino et al.,, 2000;
Schaller et al., 2008; Pils and Heyl, 2009) and eleven in Populus
trichocarpa (Ramirez-Carvajal et al., 2008; Immanen et al., 2013).
The ARR genes are transcriptionally regulated and can be induced
by exogenous cytokinin treatment (D’Agostino et al, 2000;
Taniguchi et al., 1998).

In trees, changes in endogenous cytokinin levels in relation
to seasonality have been studied for a long time. Most of these
studies focused on the endogenous cytokinin levels in xylem or
phloem sap of the trees (Hewett and Wareing, 1973; Alvim et al.,
1976; Weiler and Ziegler, 1981; Tromp and Ovaa, 1990; Cook
etal., 2001) or reported the endogenous cytokinin concentrations
in different organs (Hewett and Wareing, 1973; Van Staden
and Dimalla, 1981; Cook et al., 2001). Furthermore active and
inactive forms of cytokinins were distinguished (Hewett and
Wareing, 1973; Van Staden and Dimalla, 1981; Tromp and Ovaa,
1990) and their changes were related to seasonal fluctuations
(Tromp and Ovaa, 1990). For example, in the xylem sap of apple
trees, the active trans-zeatin type (tZ) levels were high during
the growing season, dropped during dormancy and showed
an increase during bud burst, whereas continued to increase

during the growing season (Tromp and Ovaa, 1990). Despite the
importance of cytokinins in vascular development, knowledge on
the cellular localization of this growth hormone in the stem and
other organs of woody plants is still lacking. Furthermore, it is
unclear how the tissue-specific distribution of active cytokinins is
influenced by dormancy.

The goal of this study was to investigate the occurrence and
cellular localization of active cytokinins in leaves, roots and along
the stem of poplar and to find out how the pattern is changed
between the active growth phase in summer and dormancy in
winter. Our hypothesis was that cytokinin activity was present in
actively growing tissues in summer and lacking in winter, except
in those tissues, where cells have to be kept in the meristematic
stage. Tissue-specific localization patterns of cytokinin activity
were also compared with expression of genes belonging to the
type-A Response Regulator (RR) family in poplar. In Arabidopsis,
the ARR5::GUS (B-glucuronidase) reporter construct has been
used to monitor the distribution of active cytokinins in different
tissues (D’Agostino et al, 2000). ARR5 has high homology
to the cytokinin-inducible gene PtRR10 of Populus trichocarpa
(Ramirez-Carvajal et al., 2008; Immanen et al., 2013). Here, we
employed the ARR5::GUS construct as a tool to investigate the
localization pattern of active cytokinins in poplar. The transgenic
poplar cytokinin reporter lines were grown outdoors under
ambient conditions and used to map ARR5 activity in summer
and winter.

MATERIALS AND METHODS

Plant Transformation

The ARR5::GUS construct described in D’Agostino et al. (2000)
was provided by Prof. Kieber (University of North Carolina,
Chapel Hill, NC, USA), cloned, transformed into Agrobacterium
tumefaciens strain C58C1/MP90 and then used to transform
Populus x canescens [INRA (Institut National de la Recherche
Agronomique) clone 717-1B4] as described by Teichmann et al.
(2008). Plantlets were regenerated, maintained on Murashige
and Skoog (MS) medium containing 50 mg 1! kanamycin and
micropropagated after Leple et al. (1992).

Selection of Transgenic Reporter Lines

Leaves from 3-week-old transformed plantlets were collected
and GUS staining was performed according to Jefferson et al.
(1987) as modified by Teichmann et al. (2008). Briefly, the
presence of GUS activity was investigated in intact leaves that
were vacuum-infiltrated with GUS buffer (100 mM NaH,POy,
pH 7.0, 10 mM Nay4EDTA, 0.05% Triton X-100) containing
1 mg ml~! 5-bromo-4-chloro-3-indolyl-B-D-glucuronic acid
(Duchefa, Haarlem, The Netherlands). The leaves were then
incubated in the dark at 37°C for 24 h and chlorophyll was
removed by ethanol treatment. The ARR5:GUS activity was
observed mainly in the petiole and primary veins of these
leaves. The leaves were viewed and photographed directly.
From the regenerated plantlets which were maintained on
MS medium containing kanamycin, 17 lines showed GUS
activity after GUS staining, mainly in the veins (Figures 1A,B).
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A) (B) ©) D)

FIGURE 1 | ARR5::GUS activity in leaves of ARR5::GUS poplar reporter line. The leaves of line 80 were incubated directly in GUS staining solution (A,B) or
GUS staining was performed after mock-incubated in 0.1% DMSO (solvent control; C,D). (E,F) show ARR5.::GUS activity in leaves after petiole-feeding with 5 pM
thidiazuron and BAP, respectively, while (G,H) show ARR5::GUS activity in leaves after petiole feeding with 5 wM adenine in the light (200 wmol quanta m=2 s~

PAR) for 24 h. Scale bar = 2 cm

()

)

(&) (H)

The pattern was similar to that of mock treated leaves
(Figures 1C,D).

All plantlets from these 17 lines showed similar morphology
and growth in vitro when compared to the wild-type (WT).
Plantlets from each line were propagated in vitro. The leaves
from these lines were also treated with an exogenous cytokinin
supply in order to monitor the response of ARR5::GUS construct
to cytokinin. For this purpose, leaves from 3-week-old in vitro
micropropagated plantlets were fed by the petioles with a
solution containing 5 WM thidiazuron (Duchefa, Haarlem, The
Netherlands) or 5 WM 6-benzylaminopurine (BAP, Sigma-
Aldrich Chemie, Steinheim, Germany) in 0.1% DMSO (Merck
KGaA, Darmstadt, Germany), both active cytokinin analogs or
5 WM adenine (Sigma-Aldrich Chemie, Steinheim, Germany),
which is an inactive cytokinin analog. A solution of 0.1 % DMSO
(Merck KGaA, Darmstadt, Germany) was used as the solvent
control. During the treatment the leaves were kept inside a sealed
glass jar at high humidity to avoid desiccation stress. The leaves
were allowed to transpire under 200 pwmol quanta m—2 s~!
photosynthetically active radiation (PAR) for 24 h. Afterward, the
leaves were directly used for GUS staining as above. Examples
for cytokinin induction of the ARR5 promoter in thidiazuron-
or BAP-fed leaves are shown in Figures 1E,F. When compared
to controls, the thidiazuron-treated leaves showed a strong
induction in ARR5::GUS activity over the leaf blade and in tertiary
veins (Figure 1E). On the other hand, the leaves treated with
the inactive cytokinin analog adenine did not show an induction
(Figures 1G,H). For documentation of staining pattern, the
leaves were laid flat in a petri dish filled with distilled water and
were scanned (Canoscan 4400F, Canon Inc., China).

From the lines that showed an increased ARR5::GUS activity
under exogenous cytokinin treatment, three lines (line 9, 32, and
80) were selected for the study.

Plant Cultivation
In vitro micropropagated plantlets of the lines 9, 32, and 80
along with WT, were grown in hydroponics for 3 weeks and

then transferred into pots with soil (Fruhstorfer Erde Type
N, Hawite Gruppe GmbH, Vechta, Germany) as described by
Miiller et al. (2013). The plants were grown in a greenhouse for
3 months under controlled environmental conditions: 16 h day
length, 200 wmol quanta m~2 s~! PAR, 20°C air temperature
and 55% relative air humidity. Afterward, the potted plants
were transferred from the greenhouse to a caged area outdoors
(Gottingen, Germany, 51.55739°N, 9.95857°E, 293 m above sea
level) and acclimated to ambient light and temperature (after
Miiller et al., 2013). On 18th July 2011, the poplars were planted
in four boxes (3.5 m length x 3 m width x 0.7 m height) filled
with a compost soil and sand mixture (1:1) (Vogteier Erdenwerk
GmbH, Niederdorla, Germany). The WT and transgenic lines
were planted in a mixed design. Each box was equipped with a
total of 42 plants comprising 10 plants each of WT, line 9 and
80, and 12 plants of line 32. The first row of plants near to the
box edges was not included in any of the analyses to avoid edge
effects.

During the growing season, plants were watered with tap water
every second day or daily on warm days. Air temperature, relative
humidity, and PAR for every hour per day were recorded during
the whole study period using MeteoLOG TDL 14 data logger
(Adolf Thies GmbH & Co. KG, Gottingen, Germany).

Harvest

Harvests were conducted in the growing season (August, 2012)
when the mean temperature was 22.4 °C and during dormancy
(January, 2013) when the mean temperature was —5.0 °C. In the
growing season harvest, four plants each from WT, line 9, 32,
and 80 were harvested. In the dormancy harvest, one plant from
WT and two plants from each line 9, 32, and 80 were harvested.
Roots, bark, wood, and leaves were separated and fresh mass was
determined for each fraction. Aliquots of these plant tissues were
oven dried at 60°C for 7 days for measurement of dry mass.
Tissue dry mass (g) was calculated as:

Dry mass of the aliquot (g) x total tissue fresh mass (g)

fresh mass of the aliquot (g)
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During harvest, the following fresh tissues were collected for GUS
staining: one half of the apical bud, leaf disks (diameter 5 mm)
from the first fully developed leaf from the apex, stem cross
sections (2 mm thickness) at three positions: top (50 mm beneath
the stem apex), middle (the position in the stem exactly in the
center between the apex and the shoot-root junction) and bottom
(50 mm above the root-shoot junction), and fine root tips. The
stem cross sections were cut using a micro-saw (Proxxon, Féhren,
Germany). The materials were directly transferred into the GUS
buffer and GUS staining was performed as described above.

GUS Activity Analyses at Tissue and

Cellular Level

Tissue staining patterns were documented by photos, which were
taken with a digital camera (DFC420 C, Leica Microsystems
Ltd., Germany) attached to a stereomicroscope (M205 FA, Leica
Microsystems Ltd., Wetzlar, Germany). The stained tissues were
fixed in a solution of 1 part of 37% formaldehyde, 1 part of 100%
acetic acid, and 18 parts of 70% ethanol. Subsequently, the fixed
tissues were dehydrated in a series of ethanol solutions (70, 80, 90,
and 96% (v/v)) for 2 h each at room temperature. The tissues were
embedded in Technovit 7100 resin (Heraeus Kulzer GmbH & Co.
KG, Germany) according to manufacturer’s instructions with the
following modifications: The dehydrated samples were infiltrated
in 1:1 (v/v) solutions of 96% ethanol and Technovit 7100 basic
solution for 5 h. Then the samples were infiltrated in 1:2 and then
in 1:3 (v/v) solutions of 96% ethanol and Technovit 7100 basic
solution for 12 and 5 h, respectively. Thereafter, the samples were
treated with Technovit 7100 infiltration medium consisting of 1 g
Hardner I in 100 ml Technovit 7100 basic solution (provided
by the manufacturer) for 24 h. A reduced pressure of 20 kPa
for 15 min was applied at each step during infiltration. Finally,
the tissues were embedded in the embedding medium (prepared
by mixing 30 ml infiltration medium and 1.5 ml Hardner II
provided by the manufacturer). Sections of 15 pwm thickness
were cut with a rotarymicrotome (RM 2265, Leica Microsystems,
Wetzlar, Germany) and viewed under a microscope (Axioplan
Observer.Z1, Carl Zeiss GmbH, Germany). Photographs were
taken at 100x and 200x magnification with a digital camera
(Axio Cam MRC, Carl Zeiss Microimaging GmbH, Géttingen,
Germany) attached to the microscope (Axioplan Observer.Z1,
Carl Zeiss GmbH, Germany).

Gene Expression Analyses of PtRR

Type-A Family

For the analysis of tissue specific expression patterns of poplar
genes belonging to the two component RR type-A gene family
of cytokinin signaling pathway, the gene list as reported by
Ramirez-Carvajal et al. (2008) was used. The genomic sequence
of each gene was obtained from Joint Genome Institute, JGI' and
the respective gene IDs were obtained by blasting the genomic
sequences in Phytozome v10.1> (Goodstein et al., 2012). The
homolog of each gene in Arabidopsis was obtained by blasting

Thttp://genome.jgi-pst.org/Poptrl_1/Poptrl_1l.home.html
Zhttp://phytozome.jgi.doe.gov/pz/portal.html

the protein sequence taken from Phytozome, in TAIR®. The gene
names and gene IDs of the genes used for the expression analyses
have been compiled in Table 1. Microarrays were downloaded
from the EMBL-EBI ArrayExpress database (Kolesnikov et al.,
2015). For P. x canescens: E-GEOD-16495 (shoot apex; Yordanov
et al.,, 2014), E-MEXP-1928 (mature leaves; Janz et al., 2010),
E-MEXP-2120 (mature leaves), E-MEXP-3741(bark; He et al,
2013), E-MEXP-2031 (developing xylem; Janz et al, 2012),
E-GEOD-33977 (rays- summer and winter; Larisch et al., 2012),
E-MEXP-1874 (fine roots; Luo et al., 2009), E-GEOD-43162 (fine
roots; Wei et al., 2013), and for P. trichocarpa: E-GEOD-30507
(stem, shoot and leaf primordia, mature leaves, developing xylem,
cambium, bark; Ko et al., 2012), E-MEXP-3910 (young leaves; Bai
et al., 2013), E-GEOD-49983 (bark), E-MTAB-1483 (developing
xylem and elongation zone; Euring et al., 2014), E-GEOD-21480
(stem- summer and winter); E-MEXP-3909 (young roots; Bai
etal., 2013).

For the annotation of the microarray ID to the best gene
model, the annotation file downloaded from Aspen Database
(Tsai et al., 2011) was used.

Statistical Analyses

Statistical analyses were performed using the free statistical
software R (version 3.1.1, R Core Team, 2014). One-way ANOVA
was conducted for dry biomass data with plant lines (transgenic
reporter lines and WT) as factor. Normality and homogeneity of
variance were tested visually by plotting residuals and the data
was transformed logarithmically (log,) if needed. Data shown are
mean *+ SE. Means were considered to be significantly different
with a p-value < 0.05.

For the analyses of expression data, to summarize and
normalize the array probes, ‘rma function from the R
package ‘affy’ (Gautier et al., 2004) obtained from Bioconductor
(Kauffmann et al., 2009) was used. Mean transcript abundance
of the biological replicates was calculated for each gene in each

3www.arabidopsis.org

TABLE 1 | Poplar genes belonging to the two component type-A response
regulator gene family (Ramirez-Carvajal et al., 2008) that were used for
analysis of tissue-specific expression pattern.

Populus Populus Arabidopsis AGI
trichocarpa trichocarpa gene name
gene name gene ID
PtRR1 Potri.010G037800 ARR3 AT1G59940
PtRR2 Potri.008G 193000 ARR3 AT1G59940
PtRR3 Potri.002G082200 ARR9 AT3G57040
PtRR4 Potri.003G197500 ARR9/ARR8 AT3G57040/
AT2G41310
PtRR5 Potri.001G027000 ARR9/ARR8 AT3G57040/
AT2G41310
PtRR6 Potri.006G041100 ARR9 AT3G57040
PtRR7 Potri.016G038000 ARR8 AT2G41310
PtRR8 Potri.019G058900 ARR17 AT3G56380
PtRR9 Potri.013G157700 UCP030365 AT5G05240
PtRR10 Potri.015G070000 ARR5 AT3G48100
PtRR11 Potri.019G 133600 ARR17 AT3G56380
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tissue. When more than one probe set was present for one gene,
all probe sets were used to calculate the mean value. The means
were used for creating a heatmap with the ‘heatmap.2’ function
from the R package ‘gplots’ (Warnes et al., 2012).

RESULTS

The ARR5::GUS Reporter Lines Showed

No Growth Differences Compared to
Wild-type Poplars

The poplar lines 9, 32, and 80 were grown in ambient conditions,
along with WT plants for 1.5 years. The determination of
the dry mass did not show any significant difference among
the lines (Table 2). There were no apparent visual differences
neither in summer nor in winter (Figure 2) suggesting that the
transformation with the ARR5::GUS gene construct did not hit
any gene that was relevant for growth and that the expression of
the construct had no influence on the plant stature.

ARRS5::GUS Activity Reports a Tissue-
and Cell-type Specific Pattern of
Cytokinin Activity in Poplar in the Growth

Phase
The localization pattern of ARR5::GUS activity during growing
season was investigated in apical buds, leaf disks, root tips and

in stem cross sections at three positions, i.e., top, middle, and
bottom. Plants from line 9 did not display a GUS signal in any
of the samples from the outdoor grown plants, suggesting that
silencing had occurred. Therefore, the pictures of these samples
were not considered.

In the growing season, line 32 and 80 exhibited ARR5::GUS
activity in all tissues (Figure 3), except in mature leaves (not
shown). In the apical buds, the ARR5::GUS activity was localized
in the leaf primordia and also in the apical bud base from
where the leaf primordia started (Figure 3A). ARR5::GUS was
also expressed in root tips (Figure 3E). Higher magnification
showed that the staining was concentrated in the root cap region,
decreased in the cell division zone and was stronger again at the
onset of the cell elongation zone (Figure 4). The signal showed a
gradual decrease toward the direction of the shoot (Figure 4).

Examination of cytokinin activity along the stem revealed
strong staining in pith in the region of the stem elongation zone,
while the signal in the pith disappeared in the stem middle and
at the stem bottom, where the pith was compressed by secondary
growth (Figures 3B-D). In the stem middle and at the bottom
the bark region below the periderm also showed a strong GUS
staining (Figures 3C,D).

To investigate the cellular localization pattern of ARR5::GUS
activity, stem cross sections were analyzed at a higher
magnification. In the elongation zone strong ARR5::GUS activity
in the pith was confirmed, but no staining was detected in
the cortex or primary xylem (Figure 5A). In the middle

TABLE 2 | Biomass of 1-year-old Populus x canescens wild-type and ARR5::GUS reporter lines in the growing season.

WT Line 9 Line 32 Line 80
Parameter
Stem + branches (g dry wt) 162.1 £18.1 1240+ 16.2 169.2 £ 38.2 228.0 £ 13.8
Coarse root (g dry wt) 748 +12.3 59.8 +10.6 63.7 +10.1 84.7 +£3.3
Fine root (g dry wt) 57 +£1.0 4.7 £06 6.6 £1.3 53+1.0
Below-ground (g dry wt) 80.4 +12.4 64.5 +10.8 70.3+11.2 90.0 £ 2.3

One-year-old whole poplar trees were harvested in August, 2012. Data indicate mean + SE (n = 4). One-way ANOVA conducted for dry mass of the plant lines did not

reveal any significant diifferences (p > 0.05).

before harvest during dormancy (B; January, 2013).

FIGURE 2 | Populus x canescens wild-type (WT) and ARR5::GUS transgenic reporter lines before harvest in the growth phase (A; August, 2012) and
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FIGURE 3 | ARR5::GUS activity observed in different tissues of Populus x canescens reporter lines and WT in the growing season. Representative
pictures of n = 4 replicates per line are shown. Rows (A-E) represent apical bud, stem sections from top, middle, and bottom positions, and the root tips,
respectively. Tissues are indicated by the following abbreviations: b, apical bud base; e, epidermis; cx, cortex; ph, phloem; Xy, xylem; and pi, pith. Scale bar =
for apical bud, stem middle and stem bottom. Scale bar = 1 mm for stem top and root tip.

line 80

-
3
F 3

—

2mm

of the stem strong GUS staining was observed only in the
cortex between strands of phloem fiber cells (Figure 5B). The
stem bottom sections showed a strong staining in the cortex
and also in the phloem, especially at the position of the
primary rays (Figure 5C). Detailed analysis in the mature xylem
showed ARR5::GUS activity in the ray cells adjacent to vessels
(Figure 6A). ARR5::GUS activity was also detected in the cambial
zone (Figure 6C).

ARR5::GUS Activity Reports Changes in
the Tissue- and Cell-type Specific
Pattern of Cytokinin Activity during
Dormancy Compared with the Growth
Phase

During winter dormancy the apical buds showed no ARR5::GUS
activity in the leaf primordia, but a very strong signal in the
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Root cap region

Cell division zone

Cell elongation zone

FIGURE 4 | ARR5::GUS activity in the root tip of the
Populus x canescens reporter line 32 during the growth phase. Scale
bar = 250 pm.

ground tissue below the bud base (Figure 7A). ARR5:GUS
activity below the bud base extended into a larger area of the
ground tissue of the stem than that observed during the growing
season.

Below the apex, at the stem top ARR5:GUS activity was
detected in the pith, however, with weaker intensity than in
summer (Figure 7B). This signal disappeared in the stem middle
and bottom (Figures 7C,D). The stem middle and bottom
cross sections showed a strong staining in the bark region
(Figures 7C,D). In the root tips ARR5::GUS activity was absent
in winter (Figure 7E).

Cellular localization of ARR5:GUS activity was also
monitored along the dormant stem (Figure 8). The stem
top section, which was collected at the same position below
the apex as in summer, showed a fully developed circular
ring of secondary xylem, indicating that secondary growth
had already started in this zone (Figure 8A). The reason is
that after bud set in fall, elongation growth stops and the
undifferentiated ground tissues continue to develop for some

WT line 32 line 80

FIGURE 5 | Cellular localization of ARR5::GUS activity in different stem sections of Populus x canescens reporter lines and the WT in the growth
phase. Representative pictures of n = 4 replicates per line are shown. Rows (A-C) represent stem top, stem middle, and stem bottom sections, respectively. Here,
e, epidermis; cx, cortex; pf, phloem fibers; ph, phloem; cz, cambial zone; xy, xylem; and pi, pith. Scale bar = 200 wm.
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FIGURE 6 | ARR5::GUS activity observed in the xylem rays (A,B) and in
cambium (C,D) at the stem bottom of Populus x canescens in the
growth phase and during dormancy. (A,C) represent samples from growth
phase and (B,D) represent samples during dormancy of line 32. The following
abbreviations were used: ry, ray cell; v, vessel; ph, phloem; cz, cambial zone;
and xy, xylem. Scale bar = 50 pm.

time. In winter, ARR5::GUS activity was present mainly in the
outer pith region, the perimedullary zone (Figure 8A), whereas
in the stem top sections from the growth phase most of the
ARRS5::GUS activity was localized in the center of the pith. In the
stem middle, anatomy and the pattern of ARR5:GUS activity
were similar to that at the stem bottom (Figures 8B,C). The
ARRS5::GUS activity extended across the whole cortex region
of the bark and therefore, was stronger than in summer in
this tissue (Figures 8B,C). Similar as in summer, the staining
was pronounced in cell files that were connected with xylem
rays (Figures 8B,C). ARR5::GUS activity was also localized in
the cambial zone at the stem bottom during dormancy with a
stronger signal than that detected in summer (Figure 6D).

Similar as in summer, the ray cells adjacent to vessels
showed ARR5:GUS activity (Figure 6B), but the stain was
less pronounced than in summer (Figure 6A). The ARR5:GUS
activity in distinct locations of the xylem rays was only present at
the stem bottom.

Tissue Specific Expression Pattern of

PtRR Type-A Genes

The expression of genes belonging to the type-A RR family in
poplar was analyzed in different tissues employing microarray
data (Figure 9). Each of the 11 genes identified in poplar
(Ramirez-Carvajal et al., 2008, cf. Table 1) had a probe set on
the microarrays and therefore could be included here. There was
no clustering of the PtRR transcriptional pattern according to
tissues (not shown), but all tissues showed an expression of all
P1tRR type-A genes (Figure 9). The PtRR transcriptional pattern
clearly clustered the genes in two categories, one comprising
genes with low expression (PfRRS8, 9, and 11) and the other
with genes that showed variable expression across the tissues and
season (PtRRI, 2, 3, 4, 5, 6, 7, and 10). PtRRIO, the ortholog
of ARRS5, was expressed in all tissues under study, especially in

the phloem and elongation zone in the growth phase (Figure 9),
thus supporting consistency between PtRR10 expression and our
reporter lines. In the fine roots from the growth phase, mainly
PtRRI0 was expressed while in the young roots PtRR5 was also
expressed. PtRR5, 3, and I showed strong expression in the
phloem during the growth phase. In the cambium tissues during
summer, PtRRI0 and 5 were mainly expressed. In developing
xylem, during growth phase, PtRRIO, 5, and 6 showed strong
expression. PtRR5 showed a strong expression in the developing
xylem in summer followed by PtRRI10 and 4. In the summer
rays, PtRRI0 and I showed strong expression. PtRR7 was also
expressed in summer ray cells. But in winter rays, only PtRRI
showed strong expression. In the elongation zone of the stem,
during the growth phase, PtRR10, 5, 3, 6, I, and 5 were strongly
expressed. In the shoot apex only PfRR10 was strongly expressed.

DISCUSSION

The ARRS5::GUS Construct Is Functional
in Poplar
Many of the biological and developmental phenomena shared
by herbaceous and woody plants are regulated by the same
molecular mechanism. Besides having the same cytokinin signal
transduction components, the type-ARR gene family found in
Arabidopsis and poplar is well conserved in these two plant
species (Immanen et al., 2013) with the highest similarity between
PtRRI0 and ARRS5 (Ramirez-Carvajal et al., 2008; Immanen et al.,
2013). Here, we show that the ARR5::GUS reporter construct was
functional in poplar because it was inducible by the cytokinin
analogs, thidiazuron and BAP and not by adenine, an inactive
cytokinin analog. Thus, ARR5:GUS transformed poplar lines
record the distribution of active cytokinins selectively. However,
quantification of the signal is not possible because of the
unknown turnover of GUS and the produced indigo dye.
Normal growth of the transgenic poplars indicated that there
was no significant non-target effect of the biotechnological
modification on plant performance. However, in one of the three
reporter lines, ARR5::GUS construct was apparently silenced
during long-term growth under ambient conditions. Silencing is
not uncommon in transgenic plants and can have a number of
different reasons (Stam et al., 1997; Fagard and Vaucheret, 2000).
The synthetic promoter construct TCS::GFP for monitoring
cytokinin in Arabidopsis was also subjected to silencing (Ziircher
et al, 2013). Here, the two active reporter lines showed
similar patterns of the ARR5:GUS activity in those tissues
that also showed PtRRIO expression, thus, supporting that they
confidently recorded cytokinin activity.

The Localization of ARR5::GUS ldentifies
Novel Cytokinin-Active Cell Types in

Poplar

In the growing phase, the main tissues with strong ARR5::GUS
activity included the apical bud base, the root tips, pith in stem
elongation zone, and bark in the stem middle and bottom. The
localization of active cytokinins in the apical bud base and in
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FIGURE 7 | ARR5::GUS activity observed in different tissues of Populus x canescens reporter lines and WT in winter. Representative pictures of n = 2

replicates per line are shown. Rows (A-E) represent apical bud, stem sections from top, middle, and bottom positions, and the root tips, respectively. In the pictures,
b, apical bud base; e, epidermis; cx, cortex; ph, phloem; xy, xylem; and pi, pith. Scale bar = 2 mm for apical bud, stem middle, and stem bottom. Scale bar = 1 mm
for stem top and root tip.

root tips shows strong similarity to that observed in ARR5::GUS
expressing Arabidopsis seedlings (D’Agostino et al., 2000). In
Arabidopsis seedlings, the primary and lateral root tips showed
strong ARRS5::GUS activity in the root cap region as well as in the
cell division region and elongation zone with a gradual decrease

toward the direction of the shoot apex (D’Agostino et al., 2000).
This staining pattern was also evident in the growing season in
poplar root tips in our study. Aloni et al. (2004) reported that
the ARR5::GUS signal in Arabidopsis roots was produced in the
statocytes.
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(A)

(B)

FIGURE 8 | Cellular localization of ARR5::GUS activity in different stem sections of Populus x canescens reporter lines and the WT in the growth
phase. Representative pictures of n = 2 replicates per transgenic line. Rows (A-C) represent stem top, stem middle, and stem bottom sections, respectively. Here
e, epidermis; cx, cortex; pf, phloem fibers; ph, phloem; cz, cambial zone; xy, xylem; and pi, pith. Scale bar = 200 pm.
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FIGURE 9 | Tissue-specific expression pattern of poplar genes belonging to the two component response regulator (PtRR) type-A gene family of
cytokinin signaling pathway. The following abbreviations were used: FR, fine roots; YR, young roots; ST, stem bottom; BR, bark; CA, cambium; DX, developing
xylem; RY, ray cells; ML, mature leaves; YL, young leaves; EZ, elongation zone; AP, shoot apex. The prefixes g, growing plants in controlled conditions; s, summer;
and w, winter. The suffix ¢, tissues from P x canescens and t, tissues from P, trichocarpa. The numbers 1 and 2 represent two different experiments. PtRR9 has no
assigned ARR name in Arabidopsis (see Table 1)

In the stem top, the observation of ARR5:GUS activity in  that cytokinins are important regulators of cambial activity in
the pith was unexpected, but similarly Teichmann et al. (2008)  growing poplars (Matsumoto-Kitano et al., 2008; Nieminen et al.,
also had found auxin activity in this tissue. This finding suggests  2008).
that the pith may have an important function for the hormone The presence of active cytokinins in the xylem ray cells,
supply in the young stem, where the vascular system is not which was detected here, has not been reported so far, but was
yet fully differentiated. Active cytokinins were also detected in  underpinned by high expression of poplar PtRRI0, PtRR1, and
the cambial zone of poplar, in agreement with studies showing PtRR7 in this cell type. A noteworthy finding was that
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the ARR5:GUS activity in the ray cells was seen only in
parts associated with vessels. The biological significance of high
cytokinin activity close to the vessels is unknown. However,
root-derived cytokinin that are transported with the xylem sap
through the vessel, are likely to be supplied by this route to the
rays.

The ARRS5::GUS staining pattern observed in the bark cortical
cells, primary rays and in the cambium support previous studies
reporting that cytokinins are necessary for determining vascular
cell identities (Mdhonen et al., 2000; Hutchison et al., 2006;
Yokoyama et al., 2007; Argyros et al., 2008) and stimulate
growth (Werner et al,, 2003). The positional pattern of active
cytokinin found here agrees with strong expression of the
type-ARR genes PtRR3, PtRR5, and PtRR10) in the phloem of
greenhouse grown P. trichocarpa (Ramirez-Carvajal et al., 2008).
Furthermore, we found strong expression of PtRRI10, PtRRS5,
PtRR3, and PtRRI in bark tissues. In the cambium PtRRI10
and PtRR5 were highly expressed indicating responsiveness to
cytokinins.

The reporter lines generally show expected localization
pattern, but an exception was also noted. Although PtRR10 was
expressed in mature leaves, no ARR5:GUS activity was found
in these tissues. One possibility is that PtRR10 transcription is
regulated by further signals to which ARRS5 is not responsive
or the ARR5::GUS reporter construct is insensitive to cytokinins
in fully expanded leaves in summer. Similar cases have been
reported for poplar auxin reporter lines transformed with
GH3:GUS (Teichmann et al., 2008) and DR5:GUS (Chen
et al., 2013), where no activity of these constructs was noted
in the cambium, a tissue in which an auxin maximum is
expected. However, in our study ARR5::GUS activity was detected
in the leaf primordia, where cytokinin levels determine leaf
size (Holst et al., 2011) A comparison of ARR5:GUS activity
along the stem with that of auxin reporter lines (GH3:GUS,
DR5::GUS, Teichmann et al., 2008; Chen et al., 2013) shows
overlap of the hormone activities in the elongation zone, but
contrasting intensities in the bark. In ARR5:GUS poplars,
the staining in bark was stronger toward the stem base,
whereas that of auxin reporter lines decreased toward the base.
These observations indicate that the phytohormone reporter
lines also truly reflect the hormone gradients installed by
the opposite apical production sites in roots for cytokinins
and in the stem for auxin and the inverse transport pattern
of these phytohormones along the stem (Jones and Ljung,
2011).

Cytokinin Activity Is Subject to Seasonal
Fluctuations in Distinct Tissues

Seasonal fluctuation of cytokinin activity was most notable in
the root tips, the major site of cytokinin synthesis (Aloni et al.,
2004, 2005). The absence of ARR5::GUS activity in the root tips
during dormancy together with a strong presence of ARR5::GUS
activity in the apical bud base, in the pith, and in the bark suggests
that the active cytokinins in these shoot tissues may be shoot-
derived rather than root-derived. Cytokinins from different
production sites have been distinguished by their chemical

composition. Root-derived cytokinins are mainly of the trans-
zeatin (tZ) type (Aloni et al., 2005), whereas phloem-transported
isopentenyladenine (iP) type cytokinins are considered to be
shoot-derived (Bishopp et al., 2011). In winter, the concentration
of tZ is low in the xylem sap of willows, probably because
of their decreased root production (Alvim et al., 1976), which
corresponds to the lacking ARR5:GUS signal in our study.
At the start of dormancy very high levels of the iP type
are present in the phloem sap of 14 different tree species
(Weiler and Ziegler, 1981). The studies with excised twigs of
Populus x robusta and rootless almond shoots also confirm the
presence of cytokinin after chilling (Hewett and Wareing, 1973;
Van Staden and Dimalla, 1981). Increased cytokinin levels of the
bark and in buds before the bud burst were further reported
in artificially chilled, excised apple shoots (Cook et al., 2001).
All these studies suggested that shoot derived cytokinins play a
role in dormancy and the following bud burst in spring. The
source of these cytokinins could be de novo biosynthesis or
conversion of storage forms to their active forms (Skene, 1972;
Kannangara and Booth, 1974; Van Staden and Brown, 1978;
Van Staden, 1979; Van Staden and Dimalla, 1981). Collectively,
these studies show that cytokinins are present in the dormant
phase and together with our results on ARR5:GUS activity,
it is clear that they are active in distinct cell types such as
cortical and ray cells in the bark, pith, and ray cells next to
vessels and in the shoot apex. In the cambial zone, a strong
staining was also detected during dormancy. This observation
may suggest a role of cytokinins in cambial cell maintenance in
winter.

CONCLUSION

Employing an ARR5:GUS reporter, we monitored seasonal
differences and similarities of cytokinin activity at the tissue and
cellular level in poplar. Since cytokinins increase the sensitivity of
the cambium to the auxin signal, they are important regulators
of wood quantity and quality (Aloni, 1991, 2001). Therefore,
the reporter lines can be used to investigate the involvement
of cytokinins in mediating growth constraints and growth-
promoting treatments for vascular development and cell type
identities in the future. Thereby, these poplars may become an
important tool to enhance our understanding of woody biomass
production.
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