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Spleen tyrosine kinase (Syk) is a member of the Src family of non-receptor tyrosine
kinases, which associates directly with surface receptors, including B-cell receptor and
Fcy receptor, and is involved in a variety of signal transduction pathways. Rheumatoid
arthritis (RA) and systemic lupus erythematosus are autoimmune diseases in which auto-
antibodies, immune complexes, and autoreactive T cells account for the expression of
tissue inflammation and damage. Syk inhibitors efficiently suppress RA in patients albeit
in the expression of unwanted side effects, including gastrointestinal effects, hyperten-
sion, and neutropenia. Syk inhibitors also inhibit clinical manifestations in lupus-prone
mice. Here, we review the evidence that supports the use of Syk inhibitors to treat
rheumatic and other autoimmune diseases.
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INTRODUCTION

Spleen tyrosine kinase (Syk) is a cytoplasmic protein-tyrosine kinase and a member of the Src fam-
ily of non-receptor tyrosine kinases (1). The Syk protein contains a pair of Src homology 2 (SH2)
domains at the N-terminus that are joined to each other by linker A and are separated by a longer
linker B from the catalytic domain (2, 3). Syk is activated when the tandem SH2 domains are engaged
or when tyrosines participating in the linker-kinase sandwich become phosphorylated. SH2 domains
are structural motifs that bind phosphotyrosine to enhance protein-protein interactions (4, 5). These
high affinity Syk-binding sites are known as immunoreceptor tyrosine-based activation motifs or
ITAMs, which are located in many important receptors (6). Syk physically docks to the doubly
phosphorylated ITAM via its tandem SH2 domains in a head-to-tail orientation. Conformational
changes disrupt the “linker-kinase sandwich” and activate the enzyme (7).

Spleen tyrosine kinase catalyzes the phosphorylation of proteins on tyrosines located at sites
(8). Signals are further transmitted from the Syk-receptor complex through the phosphorylation
of adapter proteins, such as BLNK/SLP-65, SLP-76, and LAT (3, 9). These phosphorylated proteins
serve as scaffolds to which effectors dock with SH2 or other related phosphotyrosine-binding motifs.
Effectors include members of the Tec-family of tyrosine kinases, lipid kinases, phospholipases, and
guanine nucleotide exchange factors that further propagate the signal allowing for the activation of
multiple pathways, including PI3K/Akt, Ras/ERK, PLCy/NFAT, Vav-1/Rac, and IKK/NFkB (2, 3).

Spleen tyrosine kinase is widely expressed in the hematopoietic system and is involved in a variety
of signal transduction pathways, including receptor signaling in mast cells, monocytes, osteoclasts,
and T, B cells (10-16) (Figure 1). In this review, we discuss the role of Syk in Fcy receptor (FcyR)
signaling and the effect of Syk inhibitor in treatment of autoimmune diseases.

Frontiers in Immunology | www.frontiersin.org 1

March 2016 | Volume 7 | Article 78


https://core.ac.uk/display/82854255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2016.00078&domain=pdf&date_stamp=2016-03-07
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://dx.doi.org/10.3389/fimmu.2016.00078
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:gmdeng@njmu.edu.cn
http://dx.doi.org/10.3389/fimmu.2016.00078
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00078/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2016.00078/abstract
http://loop.frontiersin.org/people/252555/overview
http://loop.frontiersin.org/people/17551/overview

Deng et al.

The Role of Syk in Autoimmunity

e Linker A

ITAM SH2

& Linker B

| & Fostamatinib

| PI3K/AKt, Ras/ERK, PLCY/NFAT, Vav-1/Rac and IKK/NF«B_ |

|

Degranulation 1
(histamine) B cell

maturation

Phagocytosis Osteoclas- l
togenesis  pielet

Cytokine activation

production

FIGURE 1 | Engagement of Syk and downstream effects. Following
aggregation of FcR by immune complex (IC), the phosphorylation of ITAM
tyrosine leads to the recruitment of Syk to the receptor in an interaction
mediated by its tandem pair of SH2 domains. Active Syk initiates signaling
pathways of PI3K/Akt, Ras/ERK, PLCy/NFAT, Vav-1/Rac, and IKK/NFkB and
then generates downstream effects, such as phagocytosis, cytokine
production, degranulation, B-cell maturation, osteoclastogenesis, and platelet
activation.

Syk AND IgG/Fcy RECEPTOR SIGNALING
PATHWAY

IgG is recognized by FcyR, and IgG-antigen (Ags) complexes
bind to FcyR on immune cells to mediate inflammatory immune
responses. There are three kinds of FcyR: FcyRI, FcyRIIA, and
FcyRIIIA. IgG-binding FcyR induces activation of Syk through
ITAMs defined by these receptors (17). Receptor engagement
enhances the phagocytosis of IgG-opsonized particles and the
production of cytokines, nitric oxide, and reactive oxygen species,
which promote the killing of microbes and cause tissue inflam-
matory damage. Syk-deficient macrophages cannot phagocytose
IgG-coated particles, and Syk-deficient neutrophils fail to undergo
an oxidative burst in response to the engagement of FcyRs (18,
19). In neutrophils, integrins signal through an association with
either FcyR or DAP12, another ITAM-containing accessory pro-
tein, and Syk is required for adhesion-dependent activation (20).

lgG/Fcy RECEPTOR SIGNALING AND
AUTOIMMUNE DISEASES

Type II and Type III hypersensitivity reactions are mediated by
IgG that interacts with bound and soluble Ags, respectively, and
are responsible for the inflammation that accompanies many
autoimmune diseases.

B and T cells have been shown to exert an important role in
the pathogenesis of autoimmune diseases (21). The T cell recep-
tor (TCR) is associated with the CD3 complex, which includes a
dimer of { chains each of which contains three ITAMs (15). TCR
engagement triggers the phosphorylation of { chain ITAM tyros-
ines that leads to the binding of Zap-70. B cells are responsible for
production of IgG and are activated through the B-cell receptor
(BCR). BCR consists of a membrane spanning immunoglobulin
in association with two signaling adaptors: CD79a (Ig-a) and
CD79b (Ig-p), each of which contains a single ITAM (2, 3). Syk-
deficient mice lack mature B cells (22). Disruption of the Syk gene
in DT40 B cells blocks essentially all BCR-stimulated signaling
pathways (23).

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease characterized by high levels of autoantibodies and mul-
tiorgan tissue damage. The TCR-CD3 complex in SLE T cells is
rewired in that the levels of CD3( is decreased, and its place is
taken by FcyR, which recruits Syk and not Zap-70 as its signaling
partner (24). Much of the altered gene expression that character-
izes SLE T cells (e.g., increased expression of IL-21, CD44, PP2A,
and OAS2) can be induced by the overexpression of Syk in nor-
mal T cells (25). High level of autoantibodies in serum and IgG
deposition in tissues typify SLE. Circulating immune complexes
(ICs) and primarily those formed in situ are important in the
expression of the inflammatory response (20).

Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by joint inflammation and bone destruction (26).
T cells (especially Th1 and Th17 cells) are important in the patho-
genesis of RA (27, 28). Recently, follicular helper T (Tth) cells,
whose primary task is to drive the formation of B cell responses,
have been recognized as critical regulators of autoimmunity (29,
30). Levels of pSyk in peripheral blood B cells are preferentially
higher in patients with RA compared to healthy subjects. Patients
with significantly higher pSyk levels are strongly positive for
anti-citrullinated protein antibodies (31). Mice deficient in
FcyR or FcyRIII fail to develop collagen-induced arthritis (32),
and genetic deficiency of Syk protects mice from autoantibody-
induced arthritis (33). The depletion of Syk from neutrophils
alone is effective in blocking joint inflammation in autoantibody-
induced arthritis (34), and direct injection of naked Syk siRNA
into joints inhibits the development of arthritis (35).

Systemic sclerosis (SSc) is a chronic autoimmune disease with
a high morbidity and mortality. Skin and organ fibrosis are key
manifestations of SSc, and pathogenesis remains unclear (36). Syk
inhibitor fostamatinib was demonstrated to limit tissue damage
and fibrosis in a scleroderma mouse model (37). It indicates
that the Syk pathway appears as a potential molecular target for
therapeutic intervention in SSc.

Thrombocytopenic purpura (ITP) and heparin-induced
thrombocytopenia (HIT) are autoimmune diseases in which
autoantibodies against Ags on platelets result in platelet activation
and the opsonization and phagocytosis of both platelets and meg-
akaryocytes by macrophages. Syk inhibitors block IC-mediated
platelet activation through FcyRIIA in a mouse model of HIT
(38). Fostamatinib (a Syk inhibitor) blocks platelet loss induced
by an antibody (Ab) against integrin oIIp in a mouse model of
ITP (39). A Phase II clinical trial in patients demonstrated that
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fostamatinib can restore platelet counts in approximately 50% of
patients with ITP (39).

EFFICACY OF Syk INHIBITOR ON
PATIENTS WITH RHEUMATOID
ARTHRITIS

A highly specific Syk inhibitor, known as R406, has been shown
to block Fc receptor signaling (40, 41). R788 (renamed fostam-
atinib) is a small molecule, water-soluble prodrug of the bio-
logically active R406 and a potent inhibitor of Syk (42). The small
molecule, R406 as well as R788, has been shown to inhibit the
development of experimental arthritis (43, 44). In a randomized
clinical Phase II trial, fostamatinib when added to background
treatment with methotrexate at a stable dose was effective in the
treatment of patients with RA (45, 46). Side effects included diar-
rhea, neutropenia, alanine transferase elevation, and increased
blood pressure. Most side effects were associated with the higher
doses of fostamatinib. Thus, although fostamatinib is a useful
DMARD, its clinical use has been precluded by the recorded
unexpected side effects.

EFFICACY OF Syk INHIBITOR ON LUPUS
MRL/Ipr MICE

Increased expression of Syk in SLE T cells affect the expression
of a number of enzymes, cytokines, and receptors, which are
important in disease pathogenesis, suggesting Syk may become
therapeutic target in SLE patients (25). In addition, IgG is
involved in the skin and kidney injury in SLE patients (21, 47),
and intradermal injection of lupus serum IgG induces skin
inflammation (47). The expression of Syk is increased in the skin
lesion of lupus MRL/Ipr mice (48), and the Syk inhibitor R788
completely abrogates skin inflammation induced by lupus serum
(Deng, unpublished data). The Syk inhibitor R788 can prevent
skin injury and also suppress established skin injury in lupus
MRL/lpr mice. Interestingly, discontinuation of treatment results
in extended suppression of skin disease for at least 8 weeks (48).
Finally, a Syk inhibitor has also been demonstrated to prevent
and improve, if administered after the beginning of the disease,
of kidney damage in lupus-prone mice (48, 49).

EXPRESSION OF Syk AS A PARAMETER
OF PATHOLOGY IN RA AND SLE

Spleen tyrosine kinase is expressed in rheumatoid synovium,
with activated phosphorylated Syk being differentially expressed
between RA and OA synovium (41). Syk activation plays an
essential role in TNF-a-induced cytokine production in fibro-
blast-like synoviocytes and RANKL-induced osteoclastogenesis
(3,41). Expression of Syk is abnormally increased in T cells of SLE
patients (24) and skin lesion in lupus-prone mice (48). Expression
of Syk is associated with disease progression in lupus-prone mice
(48), thus expression of phosphorylated Syk may be worked as a
parameter of pathology of RA and SLE.

SIDE EFFECTS OF Syk INHIBITOR
FOSTAMATINIB

In the trials of RA patients, side effects of Syk inhibitor fos-
tamatinib (R788) were observed. These side effects include
diarrhea, nausea, hypertension, dizziness, headaches, neutro-
penia, upper respiratory tract infections, and increased serum
alanine transaminase (ALT) levels (45, 46, 50). Diarrhea
and neutropenia are the two most common adverse events
in the overall safety population. These side effects were dose
dependent and were often reported with the 150 mg bd dose
of fostamatinib. Diarrhea occurred in 6 (13%), 5 (11%), 8
(16%), and 21 (45%) of the patients in the placebo and R788
50, 100, and 150 mg groups, respectively (45, 50). The number
of neutrophil returned to normal in all patients within 3-7 days
after interruption or reduction of the fostamatinib dose (46).
Neutropenia caused by Syk may be by Syk-impairing bone
marrow neutrophil release, and concurrent MTX use may also
playarole (51). Hypertension was a potential side effect of con-
cern. The increase in blood pressure was observed at month 1
in the fostamatinib groups (45, 50). Increases in blood pressure
were more pronounced in patients with existing hypertension
at screening or baseline. All cases responded to conventional
antihypertensive medication or reduction in fostamatinib
dose. It has been postulated that an oft target effect on vascular
endothelial growth factor receptor 2 (VEGFR) may be respon-
sible for hypertension (52).

FOLLICULAR DENDRITIC CELLS IN
AUTOIMMUNE DISEASES

Follicular dendritic cells (FDCs) are unique immune cells that
contribute to the regulation of humoral immune responses.
FDCs are located in the B-cell follicles of secondary lymphoid
tissues, where they trap and retain Ags in the form of highly
immunogenic ICs consisting of Ag plus specific Ab and/or
complement proteins through Fc and C receptor (53, 54). FDC-
FcyRIIB exerts an essential role in mediating IC periodicity,
Ag-presentation, inducing germinal center (GC) reaction, and
generating specific Abresponses. Binding of ICs to FDC-FcyRIIB
induces FDC activation that leads to significant upregulation of
FDC-ICAM-1, FDC-VCAM-1, and FDC-FcyRIIB itself (54).
IC-bearing FDCs and autoreactive GCs frequently exist in
autoimmune diseases (55, 56). Interference with FDC-reticula
attenuates autoreactive GC formation, reduces pathogenic auto-
Ab titers and memory B cells, and ameliorates arthritis (56-58).
It has been recently demonstrated that FDC follicular units
develop in RA synovium (56, 59). The high levels of FcyRIIB in
FDCs protects the immunogenicity of FDC-ICs by minimiz-
ing serious inhibition of B-cell activation upon BCR/FcyRIIB
crosslinking (54, 60). Actually, the expression of FcyRIIB is
significantly reduced on RA memory B cells and plasmablasts,
and these alterations on FcyRIIB are associated with high levels
of anti-citrullinated vimentin auto-Abs (61). It is not clear
whether Syk inhibitor fostamatinib blocks FDC activation and
signal transduction.
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CONCLUSION

Based on the evidence, Syk exerts an important role in the IgG/
FcyR signaling pathway and in the aberrant signaling of SLE T
cells. There is ample evidence from the study of human samples
preclinical experiments that signaling involving Syk contributes
to the pathogenesis of autoimmune diseases. Syk inhibitors
efficiently suppress RA in patients albeit in the expression of
unwanted side effects and raise platelet counts in patients with
immune thrombocytopenia. In lupus-prone mice, systemic
administration of Syk inhibitors results in the prevention or
treatment of skin and kidney injury. It is hoped that more specific
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