12,539 research outputs found

    Electric-field-driven polymer entry into asymmetric nanoscale channels

    Full text link
    The electric-field-driven entry process of flexible charged polymers such as single stranded DNA (ssDNA) into asymmetric nanoscale channels such as alpha-hemolysin protein channel is studied theoretically and using molecular dynamics simulations. Dependence of the height of the free-energy barrier on the polymer length, the strength of the applied electric field and the channel entrance geometry is investigated. It is shown that the squeezing effect of the driving field on the polymer and the lateral confinement of the polymer before its entry to the channel crucially affect the barrier height and its dependence on the system parameters. The attempt frequency of the polymer for passing the channel is also discussed. Our theoretical and simulation results support each other and describe related data sets of polymer translocation experiments through the alpha-hemolysin protein channel reasonably well

    Three-dimensional Brownian diffusion of rod-like macromolecules in the presence of randomly distributed spherical obstacles: Molecular dynamics simulation

    Full text link
    Brownian diffusion of rod-like polymers in the presence of randomly distributed spherical obstacles is studied using molecular dynamics (MD) simulations. It is observed that dependence of the reduced diffusion coefficient of these macromolecules on the available volume fraction can be described reasonably by a power law function. Despite the case of obstructed diffusion of flexible polymers in which reduced diffusion coefficient has a weak dependence on the polymer length, this dependence is noticeably strong in the case of rod-like polymers. Diffusion of these macromolecules in the presence of obstacles is observed that is anomalous at short time scales and normal at long times. Duration time of the anomalous diffusion regime is found that increases very rapidly with increasing both the polymer length and the obstructed volume fraction. Dynamics of diffusion of these polymers is observed that crosses over from Rouse to reptation type with increasing the density of obstacles.Comment: 7pages, 6 figures, accepted for publication in JCP, 201

    Effect of a polymer additive on heat transport in turbulent Rayleigh-B\'enard convection

    Full text link
    Measurements of heat transport, as expressed by the Nusselt number NuNu, are reported for turbulent Rayleigh-B\'enard convection of water containing up to 120 ppm by weight of poly-[ethylene oxide] with a molecular weight of 4×1064\times10^6 g/mole. Over the Rayleigh number range 5\times 10^9 \alt Ra \alt 7 \times 10^{10} NuNu is smaller than it is for pure water by up to 10%.Comment: 3 pages, 2 figure

    Renormalization group analysis of the Reynolds stress transport equation

    Get PDF
    The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately

    Nonmonotonic Aging and Memory in a Frictional Interface

    Full text link
    We measure the static frictional resistance and the real area of contact between two solid blocks subjected to a normal load. We show that following a two-step change in the normal load the system exhibits nonmonotonic aging and memory effects, two hallmarks of glassy dynamics. These dynamics are strongly influenced by the discrete geometry of the frictional interface, characterized by the attachment and detachment of unique microcontacts. The results are in good agreement with a theoretical model we propose that incorporates this geometry into the framework recently used to describe Kovacs-like relaxation in glasses as well as thermal disordered systems. These results indicate that a frictional interface is a glassy system and strengthen the notion that nonmonotonic relaxation behavior is generic in such systems.Comment: 5 pages, 4 figure
    corecore