24,009,047 research outputs found

    STRUCTURE FOR REGULAR INCLUSIONS

    Get PDF
    We study pairs (C,D) of unital C∗-algebras where D is an abelian C∗-subalgebra of C which is regular in C in the sense that the span of {v 2 C : vDv∗ [ v∗Dv D} is dense in C. When D is a MASA in C, we prove the existence and uniqueness of a completely positive unital map E of C into the injective envelope I(D) of D whose restriction to D is the identity on D. We show that the left kernel of E, L(C,D), is the unique closed two-sided ideal of C maximal with respect to having trivial intersection with D. When L(C,D) = 0, we show the MASA D norms C in the sense of Pop-Sinclair-Smith. We apply these results to significantly extend existing results in the literature on isometric isomorphisms of norm-closed subalgebras which lie between D and C. The map E can be used as a substitute for a conditional expectation in the construction of coordinates for C relative to D. We show that coordinate constructions of Kumjian and Renault which relied upon the existence of a faithful conditional expectation may partially be extended to settings where no conditional expectation exists. As an example, we consider the situation in which C is the reduced crossed product of a unital abelian C∗-algebra D by an arbitrary discrete group acting as automorphisms of D. We charac- terize when the relative commutant Dc of D in C is abelian in terms of the dynamics of the action of and show that when Dc is abelian, L(C,Dc) = (0). This setting produces examples where no conditional expectation of C onto Dc exists. In general, pure states of D do not extend uniquely to states on C. However, when C is separable, and D is a regular MASA in C, we show the set of pure states on D with unique state extensions to C is dense in D. We introduce a new class of well behaved state extensions, the compatible states; we identify compatible states when D is a MASA in C in terms of groups constructed from local dynamics near an element 2 ˆD. A particularly nice class of regular inclusions is the class of C∗-diagonals; each pair in this class has the extension property, and Kumjian has shown that coordinate systems for C∗-diagonals are particularly well behaved. We show that the pair (C,D) regularly embeds into a C∗-diagonal precisely when the intersection of the left kernels of the compatible states is trivial

    Graph algebras and orbit equivalence

    Get PDF
    We introduce the notion of orbit equivalence of directed graphs, following Matsumoto’s notion of continuous orbit equivalence for topological Markov shifts. We show that two graphs in which every cycle has an exit are orbit equivalent if and only if there is a diagonal-preserving isomorphism between their C∗C∗-algebras. We show that it is necessary to assume that every cycle has an exit for the forward implication, but that the reverse implication holds for arbitrary graphs. As part of our analysis of arbitrary graphs EE we construct a groupoid G(C∗(E),D(E))G(C∗(E),D(E)) from the graph algebra C∗(E)C∗(E) and its diagonal subalgebra D(E)D(E) which generalises Renault’s Weyl groupoid construction applied to (C∗(E),D(E))(C∗(E),D(E)). We show that G(C∗(E),D(E))G(C∗(E),D(E)) recovers the graph groupoid GEGE without the assumption that every cycle in EE has an exit, which is required to apply Renault’s results to (C∗(E),D(E))(C∗(E),D(E)). We finish with applications of our results to out-splittings of graphs and to amplified graphs

    Glass transition of hard spheres in high dimensions

    Full text link
    We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions dd\to \infty in the framework of mode-coupling theory. The numerical results for the critical collective and self nonergodicity parameters fc(k;d)f_{c}(k;d) and fc(s)(k;d)f_{c}^{(s)}(k;d) exhibit non-Gaussian kk -dependence even up to d=800d=800. fc(s)(k;d)f_{c}^{(s)}(k;d) and fc(k;d)f_{c}(k;d) differ for kd1/2k\sim d^{1/2}, but become identical on a scale kdk\sim d, which is proven analytically. The critical packing fraction ϕc(d)d22d\phi_{c}(d) \sim d^{2}2^{-d} is above the corresponding Kauzmann packing fraction ϕK(d)\phi_{K}(d) derived by a small cage expansion. Its quadratic pre-exponential factor is different from the linear one found earlier. The numerical values for the exponent parameter and therefore the critical exponents aa and bb depend on dd, even for the largest values of dd.Comment: 11 pages, 8 figures, Phys. Rev. E (in print
    corecore