855,289 research outputs found

    The Epidemiology of Stargardt Disease in the United Kingdom

    Get PDF
    The authors thank the British Ophthalmological Surveillance Unit (BOSU) for the support received, as well as Mr Barnaby Foot, research coordinator for BOSU, for his help and advice on this project. The authors thank the following ophthalmologists who assisted with data collection for this study: N. Acharya, S. Anwar, V. Bansal, P.N. Bishop, D. Byles, J.S. Chawla, A. Churchill, M. Clarke, B. Dhillon, M. Ekstein, S. George, J. Gillian, J.T. Gillow, D. Gilmour, R. Gray, P.T.S. Gregory, R. Gupta, S.P. Kelly, I.C. Lloyd, A. Lotery, M. McKibbin, R. MacLaren, G. Menon, A.T. Moore, A. Mulvihill, Y. Osoba, R. Pilling, H. Porooshani, A. Raghu Ram, T. Rimmer, I. Russell-Eggitt, M. Sarhan, R. Savides, S. Shafquat, A. Smith, A. Tekriwal, P. Tesha, P. Watts.Peer reviewedPublisher PD

    Strong Brane Gravity and the Radion at Low Energies

    Get PDF
    For the 2-brane Randall-Sundrum model, we calculate the bulk geometry for strong gravity, in the low matter density regime, for slowly varying matter sources. This is relevant for astrophysical or cosmological applications. The warped compactification means the radion can not be written as a homogeneous mode in the orbifold coordinate, and we introduce it by extending the coordinate patch approach of the linear theory to the non-linear case. The negative tension brane is taken to be in vacuum. For conformally invariant matter on the positive tension brane, we solve the bulk geometry as a derivative expansion, formally summing the `Kaluza-Klein' contributions to all orders. For general matter we compute the Einstein equations to leading order, finding a scalar-tensor theory with ω(Ψ)Ψ/(1Ψ)\omega(\Psi) \propto \Psi / (1 - \Psi), and geometrically interpret the radion. We comment that this radion scalar may become large in the context of strong gravity with low density matter. Equations of state allowing (ρ3P)(\rho - 3 P) to be negative, can exhibit behavior where the matter decreases the distance between the 2 branes, which we illustrate numerically for static star solutions using an incompressible fluid. For increasing stellar density, the branes become close before the upper mass limit, but after violation of the dominant energy condition. This raises the interesting question of whether astrophysically reasonable matter, and initial data, could cause branes to collide at low energy, such as in dynamical collapse.Comment: 24 pages, 3 figure

    Exact braneworld cosmology induced from bulk black holes

    Get PDF
    We use a new, exact approach in calculating the energy density measured by an observer living on a brane embedded in a charged black hole spacetime. We find that the bulk Weyl tensor gives rise to non-linear terms in the energy density and pressure in the FRW equations for the brane. Remarkably, these take exactly the same form as the ``unconventional'' terms found in the cosmology of branes embedded in pure AdS, with extra matter living on the brane. Black hole driven cosmologies have the benefit that there is no ambiguity in splitting the braneword energy momentum into tension and additional matter. We propose a new, enlarged relationship between the two descriptions of braneworld cosmology. We also study the exact thermodynamics of the field theory and present a generalised Cardy-Verlinde formula in this set up.Comment: 17 pages, no figures; v3: Minor change, References added, Version to appear in CQ

    Black Branes in a Box: Hydrodynamics, Stability, and Criticality

    Full text link
    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.Comment: 23 pages, 3 figures. v2: added comments on first-order phase transitio

    Cosmic acceleration from asymmetric branes

    Full text link
    We consider a single 3-brane sitting in between two different five dimensional spacetimes. On each side of the brane, the bulk is a solution to Gauss-Bonnet gravity, although the bare cosmological constant, funda mental Planck scale, and Gauss-Bonnet coupling can differ. This asymmetry leads to weighted junction conditions across the brane and interesting brane cosmology. We focus on two special cases: a generalized Randall-Sundrum model without any Gauss-Bonnet terms, and a stringy model, without any bare cosmological constants, and positive Gauss-Bonnet coupling. Even though we assume there is no vacuum energy on the brane, we find late time de Sitter cosmologies can occur. Remarkably, in certain parameter regions, this acceleration is preceded by a period of matter/radiation domination, with H2ρH^2 \propto \rho, all the way back to nucleosynthesis.Comment: Version appearing in CQ

    Cosmology of intersecting brane world models in Gauss-Bonnet gravity

    Full text link
    We study the cosmological properties of a codimension two brane world that sits at the intersection between two four branes, in the framework of six dimensional Einstein-Gauss-Bonnet gravity. Due to contributions of the Gauss-Bonnet terms, the junction conditions require the presence of localized energy density on the codimension two defect. The induced metric on this surface assumes a FRW form, with a scale factor associated to the position of the brane in the background; we can embed on the codimension two defect the preferred form of energy density. We present the cosmological evolution equations for the three brane, showing that, for the case of pure AdS6_6 backgrounds, they acquire the same form of the ones for the Randall-Sundrum II model. When the background is different from pure AdS6_6, the cosmological behavior is potentially modified in respect to the typical one of codimension one brane worlds. We discuss, in a particular model embedded in an AdS6_6 black hole, the conditions one should satisfy in order to obtain standard cosmology at late epochs.Comment: 19 pages, no figures, JHEP style. v2: Typos corrected and references adde

    Thick domain wall universes

    Get PDF
    We investigate the spacetime of a thick gravitating domain wall for a general potential V(Φ)V(\Phi). Using general analytical arguments we show that all nontrivial solutions fall into two categories: those interpretable as an isolated domain wall with a cosmological event horizon, and those which are pure false vacuum de Sitter solutions. Although this latter solution is always unstable to the field rolling coherently to its true vacuum, we show that there is an additional instability to wall formation if the scalar field does not couple too strongly to gravity. Using the λΦ4\lambda \Phi^4 and sine-Gordon models as illustrative examples, we investigate the phase space of the gravitating domain wall in detail numerically, following the solutions from weak to strong gravity. We find excellent agreement with the analytic work. Then, we analyse the domain wall in the presence of a cosmological constant finding again the two kinds of solutions, wall and de Sitter, even in the presence of a negative cosmological constant.Comment: 20 pages revtex, epsfig, references added, some conclusions altere

    Codimension Two Compactifications and the Cosmological Constant Problem

    Get PDF
    We consider solutions of six dimensional Einstein equations with two compact dimensions. It is shown that one can introduce 3-branes in this background in such a way that the effective four dimensional cosmological constant is completely independent of the brane tensions. These tensions are completely arbitrary, without requiring any fine tuning. We must, however, fine tune bulk parameters in order to obtain a sufficiently small value for the observable cosmological constant. We comment in the effective four dimensional description of this effect at energies below the compactification scale.Comment: 4 pages, rextex

    Asymmetric Swiss-cheese brane-worlds

    Full text link
    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid however can proceed along four branches, two allowed to have positive energy density, one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions (b) a difference in the left and right bulk cosmological constants. While the behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is 10 times the lower limit. The degree of asymmetry allowed by present cosmological observations is however much less, pushing the upper limit to infinity.Comment: v2: considerably expanded, 19 pages, 8 figures, many new references. Pressure singularity censorship introduced, strict limits on the possible degree of asymmetry derived. v3: model independent analysis shows that the asymmetry bounds the brane tension from above. Limits on the maximal tension set. Version published in JCA

    New Five Dimensional Black Holes Classified by Horizon Geometry, and a Bianchi VI Braneworld

    Full text link
    We introduce two new families of solutions to the vacuum Einstein equations with negative cosmological constant in 5 dimensions. These solutions are static black holes whose horizons are modelled on the 3-geometries nilgeometry and solvegeometry. Thus the horizons (and the exterior spacetimes) can be foliated by compact 3-manifolds that are neither spherical, toroidal, hyperbolic, nor product manifolds, and therefore are of a topological type not previously encountered in black hole solutions. As an application, we use the solvegeometry solutions to construct Bianchi VI1_{-1} braneworld cosmologies.Comment: LaTeX, 20 pages, 2 figures Typographical errors corrected, and references to printed matter added in favour of preprints where possibl
    corecore