1,210 research outputs found
Key exchange with the help of a public ledger
Blockchains and other public ledger structures promise a new way to create
globally consistent event logs and other records. We make use of this
consistency property to detect and prevent man-in-the-middle attacks in a key
exchange such as Diffie-Hellman or ECDH. Essentially, the MitM attack creates
an inconsistency in the world views of the two honest parties, and they can
detect it with the help of the ledger. Thus, there is no need for prior
knowledge or trusted third parties apart from the distributed ledger. To
prevent impersonation attacks, we require user interaction. It appears that, in
some applications, the required user interaction is reduced in comparison to
other user-assisted key-exchange protocols
On the Design of Cryptographic Primitives
The main objective of this work is twofold. On the one hand, it gives a brief
overview of the area of two-party cryptographic protocols. On the other hand,
it proposes new schemes and guidelines for improving the practice of robust
protocol design. In order to achieve such a double goal, a tour through the
descriptions of the two main cryptographic primitives is carried out. Within
this survey, some of the most representative algorithms based on the Theory of
Finite Fields are provided and new general schemes and specific algorithms
based on Graph Theory are proposed
Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions
Authenticated Diffie-Hellman key exchange allows two principals communicating over a public network, and each holding public /private keys, to agree on a shared secret value. In this paper we study the natural extension of this cryptographic problem to a group of principals. We begin from existing formal security models and refine them to incorporate major missing details (e.g., strong-corruption and concurrent sessions). Within this model we define the execution of a protocol for authenticated dynamic group Diffie-Hellman and show that it is provably secure under the decisional Diffie-Hellman assumption. Our security result holds in the standard model and thus provides better security guarantees than previously published results in the random oracle model
Experimentally realizable quantum comparison of coherent states and its applications
When comparing quantum states to each other, it is possible to obtain an
unambiguous answer, indicating that the states are definitely different,
already after a single measurement. In this paper we investigate comparison of
coherent states, which is the simplest example of quantum state comparison for
continuous variables. The method we present has a high success probability, and
is experimentally feasible to realize as the only required components are beam
splitters and photon detectors. An easily realizable method for quantum state
comparison could be important for real applications. As examples of such
applications we present a "lock and key" scheme and a simple scheme for quantum
public key distribution.Comment: 14 pages, 5 figures, version one submitted to PRA. Version two is the
final accepted versio
Security by Spatial Reference:Using Relative Positioning to Authenticate Devices for Spontaneous Interaction
Spontaneous interaction is a desirable characteristic associated with mobile and ubiquitous computing. The aim is to enable users to connect their personal devices with devices encountered in their environment in order to take advantage of interaction opportunities in accordance with their situation. However, it is difficult to secure spontaneous interaction as this requires authentication of the encountered device, in the absence of any prior knowledge of the device. In this paper we present a method for establishing and securing spontaneous interactions on the basis of emphspatial references that capture the spatial relationship of the involved devices. Spatial references are obtained by accurate sensing of relative device positions, presented to the user for initiation of interactions, and used in a peer authentication protocol that exploits a novel mechanism for message transfer over ultrasound to ensures spatial authenticity of the sender
Resolution of Linear Algebra for the Discrete Logarithm Problem Using GPU and Multi-core Architectures
In cryptanalysis, solving the discrete logarithm problem (DLP) is key to
assessing the security of many public-key cryptosystems. The index-calculus
methods, that attack the DLP in multiplicative subgroups of finite fields,
require solving large sparse systems of linear equations modulo large primes.
This article deals with how we can run this computation on GPU- and
multi-core-based clusters, featuring InfiniBand networking. More specifically,
we present the sparse linear algebra algorithms that are proposed in the
literature, in particular the block Wiedemann algorithm. We discuss the
parallelization of the central matrix--vector product operation from both
algorithmic and practical points of view, and illustrate how our approach has
contributed to the recent record-sized DLP computation in GF().Comment: Euro-Par 2014 Parallel Processing, Aug 2014, Porto, Portugal.
\<http://europar2014.dcc.fc.up.pt/\>
On the Security of the Algebraic Eraser Tag Authentication Protocol
The Algebraic Eraser has been gaining prominence as SecureRF, the company
commercializing the algorithm, increases its marketing reach. The scheme is
claimed to be well-suited to IoT applications but a lack of detail in available
documentation has hampered peer-review. Recently more details of the system
have emerged after a tag authentication protocol built using the Algebraic
Eraser was proposed for standardization in ISO/IEC SC31 and SecureRF provided
an open public description of the protocol. In this paper we describe a range
of attacks on this protocol that include very efficient and practical tag
impersonation as well as partial, and total, tag secret key recovery. Most of
these results have been practically verified, they contrast with the 80-bit
security that is claimed for the protocol, and they emphasize the importance of
independent public review for any cryptographic proposal.Comment: 21 pages. Minor changes. Final version accepted for ACNS 201
Analysis of common attacks in LDPCC-based public-key cryptosystems
We analyze the security and reliability of a recently proposed class of
public-key cryptosystems against attacks by unauthorized parties who have
acquired partial knowledge of one or more of the private key components and/or
of the plaintext. Phase diagrams are presented, showing critical partial
knowledge levels required for unauthorized decryptionComment: 14 pages, 6 figure
A New View on Worst-Case to Average-Case Reductions for NP Problems
We study the result by Bogdanov and Trevisan (FOCS, 2003), who show that
under reasonable assumptions, there is no non-adaptive worst-case to
average-case reduction that bases the average-case hardness of an NP-problem on
the worst-case complexity of an NP-complete problem. We replace the hiding and
the heavy samples protocol in [BT03] by employing the histogram verification
protocol of Haitner, Mahmoody and Xiao (CCC, 2010), which proves to be very
useful in this context. Once the histogram is verified, our hiding protocol is
directly public-coin, whereas the intuition behind the original protocol
inherently relies on private coins
Anonymous Single-Sign-On for n designated services with traceability
Anonymous Single-Sign-On authentication schemes have been proposed to allow
users to access a service protected by a verifier without revealing their
identity which has become more important due to the introduction of strong
privacy regulations. In this paper we describe a new approach whereby anonymous
authentication to different verifiers is achieved via authorisation tags and
pseudonyms. The particular innovation of our scheme is authentication can only
occur between a user and its designated verifier for a service, and the
verification cannot be performed by any other verifier. The benefit of this
authentication approach is that it prevents information leakage of a user's
service access information, even if the verifiers for these services collude
which each other. Our scheme also supports a trusted third party who is
authorised to de-anonymise the user and reveal her whole services access
information if required. Furthermore, our scheme is lightweight because it does
not rely on attribute or policy-based signature schemes to enable access to
multiple services. The scheme's security model is given together with a
security proof, an implementation and a performance evaluation.Comment: 3
- …
