364 research outputs found
Plans for the development of cryogenic engines for space exploration
The NASA Lewis Research Center (LeRC) is conducting a broad range of basic research and focused technology development activities in both aeronautical and space propulsion. By virtue of the successful conduct of these programs, LeRC is strongly qualified to lead Advanced Development and subsequent development programs on cryogenic space propulsion systems on support of the Space Exploration Initiative. A review is provided of technology status, including recent progress in the ongoing activities, and a top level description of the proposed program
Genome-Wide Analysis of leafbladeless1-Regulated and Phased Small RNAs Underscores the Importance of the TAS3 ta-siRNA Pathway to Maize Development
Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radial, abaxialized leaves. To investigate the basis for this phenotype, we compared the small RNA content between wild-type and lbl1 seedling apices. We show that LBL1 affects the accumulation of small RNAs in all major classes, and reveal unexpected crosstalk between ta-siRNA biogenesis and other small RNA pathways regulating transposons. Interestingly, in contrast to data from other plant species, we found no evidence for the existence of phased siRNAs generated via the one-hit model. Our analysis identified nine TAS loci, all belonging to the conserved TAS3 family. Information from RNA deep sequencing and PARE analyses identified the tasiR-ARFs as the major functional ta-siRNAs in the maize vegetative apex where they regulate expression of AUXIN RESPONSE FACTOR3 (ARF3) homologs. Plants expressing a tasiR-ARF insensitive arf3a transgene recapitulate the phenotype of lbl1, providing direct evidence that deregulation of ARF3 transcription factors underlies the developmental defects of maize ta-siRNA biogenesis mutants. The phenotypes of Arabidopsis and Medicago ta-siRNA mutants, while strikingly different, likewise result from misexpression of the tasiR-ARF target ARF3. Our data indicate that diversity in TAS pathways and their targets cannot fully account for the phenotypic differences conditioned by ta-siRNA biogenesis mutants across plant species. Instead, we propose that divergence in the gene networks downstream of the ARF3 transcription factors or the spatiotemporal pattern during leaf development in which these proteins act constitute key factors underlying the distinct contributions of the ta-siRNA pathway to development in maize, Arabidopsis, and possibly other plant species as well
Genome-Wide Functional Analysis of the Cotton Transcriptome by Creating an Integrated EST Database
A total of 28,432 unique contigs (25,371 in consensus contigs and 3,061 as singletons) were assembled from all 268,786 cotton ESTs currently available. Several in silico approaches [comparative genomics, Blast, Gene Ontology (GO) analysis, and pathway enrichment by Kyoto Encyclopedia of Genes and Genomes (KEGG)] were employed to investigate global functions of the cotton transcriptome. Cotton EST contigs were clustered into 5,461 groups with a maximum cluster size of 196 members. A total of 27,956 indel mutants and 149,616 single nucleotide polymorphisms (SNPs) were identified from consensus contigs. Interestingly, many contigs with significantly high frequencies of indels or SNPs encode transcription factors and protein kinases. In a comparison with six model plant species, cotton ESTs show the highest overall similarity to grape. A total of 87 cotton miRNAs were identified; 59 of these have not been reported previously from experimental or bioinformatics investigations. We also predicted 3,260 genes as miRNAs targets, which are associated with multiple biological functions, including stress response, metabolism, hormone signal transduction and fiber development. We identified 151 and 4,214 EST-simple sequence repeats (SSRs) from contigs and raw ESTs respectively. To make these data widely available, and to facilitate access to EST-related genetic information, we integrated our results into a comprehensive, fully downloadable web-based cotton EST database (www.leonxie.com)
Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs
Early developmental stages are highly sensitive to stress and it has been reported that pre-conditioning with tobacco smoking during adolescence predisposes those youngsters to become smokers as adults. However, the molecular mechanisms of nicotine-induced transgenerational consequences are unknown. In this study, we genome-widely investigated the impact of nicotine exposure on small regulatory microRNAs (miRNAs) and its implication on health disorders at a transgenerational aspect. Our results demonstrate that nicotine exposure, even at the low dose, affected the global expression profiles of miRNAs not only in the treated worms (F0 parent generation) but also in two subsequent generations (F1 and F2, children and grandchildren). Some miRNAs were commonly affected by nicotine across two or more generations while others were specific to one. The general miRNA patterns followed a “two-hit� model as a function of nicotine exposure and abstinence. Target prediction and pathway enrichment analyses showed daf-4, daf-1, fos-1, cmk-1, and unc-30 to be potential effectors of nicotine addiction. These genes are involved in physiological states and phenotypes that paralleled previously published nicotine induced behavior. Our study offered new insights and further awareness on the transgenerational effects of nicotine exposed during the vulnerable post-embryonic stages, and identified new biomarkers for nicotine addiction.ECU Open Access Publishing Support Fun
A cross-country review of strategies of the German development cooperation to strengthen human resources
ABSTRACT: BACKGROUND: Recent years have seen growing awareness of the importance of human resources for health in health systems and with it an intensifying of the international and national policies in place to steer a response. This paper looks at how governments and donors in five countries - Cameroon, Indonesia, Malawi, Rwanda and Tanzania - have translated such policies into action. More detailed information with regard to initiatives of German development cooperation brings additional depth to the range and entry doors of human resources for health initiatives from the perspective of donor cooperation. METHODS: This qualitative study systematically presents different approaches and stages to human resources for health development in a cross-country comparison. An important reference to capture implementation at country level was grey literature such as policy documents and programme reports. In-depth interviews along a predefined grid with national and international stakeholders in the five countries provided information on issues related to human resources for health policy processes and implementation. RESULTS: All five countries have institutional entities in place and have drawn up national policies to address human resources for health. Only some of the countries have translated policies into strategies with defined targets and national programmes with budgets and operational plans. Traditional approaches of supporting training for individual health professionals continue to dominate. In some cases partners have played an advocacy and technical role to promote human resources for health development at the highest political levels, but usually they still focus on the provision of ad hoc training within their programmes, which may not be in line with national human resources for health development efforts or may even be counterproductive to them. Countries that face an emergency, such as Malawi, have intensified their efforts within a relatively short time and by using donor funding support also through new initiatives such as the Global Fund to Fight AIDS, Tuberculosis and Malaria. CONCLUSIONS: The country case studies illustrate the range of initiatives that have surged in recent years and some main trends in terms of donor initiatives. Though attention and priority attributed to human resources for health is increasing, there is still a focus on single initiatives and programmes. This can be explained in part by the complexity of the issue, and in part by its need to be addressed through a long-term approach including public sector and salary reforms that go beyond the health secto
Kaiso (ZBTB33) subcellular partitioning functionally links LC3A/B, the tumor microenvironment, and breast cancer survival
The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso’s subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso’s role in breast cancer progression.Fil: Singhal, Sandeep K.. North Dakota State University; Estados UnidosFil: Byun, Jung S.. National Institutes of Health; Estados UnidosFil: Park, Samson. National Institutes of Health; Estados UnidosFil: Yan, Tingfen. National Institutes of Health; Estados UnidosFil: Yancey, Ryan. Columbia University; Estados UnidosFil: Caban, Ambar. Columbia University; Estados UnidosFil: Hernandez, Sara Gil. National Institutes of Health; Estados UnidosFil: Hewitt, Stephen M.. U.S. Department of Health & Human Services. National Institute of Health. National Cancer Institute; Estados UnidosFil: Boisvert, Heike. Ultivue, Inc; Reino UnidoFil: Hennek, Stephanie. Ultivue Inc.; Reino UnidoFil: Bobrow, Mark. Ultivue Inc.; Reino UnidoFil: Ahmed, Md Shakir Uddin. Tuskegee University; Estados UnidosFil: White, Jason. Tuskegee University; Estados UnidosFil: Yates, Clayton. Tuskegee University; Estados UnidosFil: Aukerman, Andrew. Columbia University; Estados UnidosFil: Vanguri, Rami. Columbia University; Estados UnidosFil: Bareja, Rohan. Columbia University; Estados UnidosFil: Lenci, Romina. Columbia University; Estados UnidosFil: Farré, Paula Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: de Siervi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Nápoles, Anna María. National Institutes of Health; Estados UnidosFil: Vohra, Nasreen. East Carolina University; Estados UnidosFil: Gardner, Kevin. Columbia University; Estados Unido
Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs
miRNAs have been found to repress gene expression at posttranscriptional level in cells. Studies have shown that expression of miRNAs is tissue-specific and developmental-stage-specific. The mechanism behind this could be explained by miRNA pathways. In this study, totally 54 miRNAs were analysed in 7 matched human foetal and adult organs (brain, colon, heart, kidney, liver, lung and spleen) using real-time PCR. Quantitative analysis showed that a big proportion of the 54 miRNAs have higher general expression in the organs of the foetal period than the adult period, with the exception of the heart. The miRNA gene promoter methylation level in the adult stages was higher than in the foetal stages. Moreover, there is a high general expression level of several miRNAs in both stages of brain, kidney, liver, lung and spleen, but not seen in colon and heart. Our results indicate that the miRNAs may play a bigger role in the foetal stage than the adult stage of brain, colon, kidney, liver, lung and spleen. The majority of the miRNAs analysed may play an important role in the growth and development of brain, kidney, liver, lung and spleen. However, a minority of the miRNAs may be functional in colon and heart
Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana
Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 Ler×Fei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth
In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus
- …
