27 research outputs found

    Binding Modes of Peptidomimetics Designed to Inhibit STAT3

    Get PDF
    STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing dimerization of cancer target protein STAT3

    Social network analysis resolves temporal dynamics of male dominance relationships

    Get PDF
    Social organization is often studied through point estimates of individual association or interaction patterns, which does not account for temporal changes in the course of familiarization processes and the establishment of social dominance. Here, we present new insights on short-term temporal dynamics in social organization of mixed-sex groups that have the potential to affect sexual selection patterns. Using the live-bearing Atlantic molly (Poecilia mexicana), a species with pronounced male size polymorphism, we investigated social network dynamics of mixed sex experimental groups consisting of eight females and three different-sized males over a period of 5 days. Analyzing association-based social networks as well as direct measures of spatial proximity, we found that large males tended to monopolize most females, while excluding small- and medium-bodied males from access to females. This effect, however, emerged only gradually over time, and different-sized males had equal access to females on day 1 as well as day 2, though to a lesser extent. In this highly aggressive species with strong social dominance stratifications, the observed temporal dynamics in male-female association patterns may balance the presumed reproductive skew among differentially competitive male phenotypes when social structures are unstable (i.e., when individual turnover rates are moderate to high). Ultimately, our results point toward context-dependent sexual selection arising from temporal shifts in social organization. © 2014 Springer-Verlag Berlin Heidelberg
    corecore