14,852 research outputs found
Lipid aggregate formation at an oscillating bubble surface: A simulation study
We perform a molecular dynamics simulation study of the behavior of a lipid coating layer on an oscillating bubble surface. Micrometer sized bubbles, stabilized with a lipid monolayer coating, are used in acoustic imaging as a contrast agent. The coating layer is expected to be strongly influenced by the oscillation of the bubble in the high frequency sound field, with a period of a microsecond. The typical time scale of molecular motion, however, is of the order of femtoseconds. One of the challenges is to bridge this nine decade gap in time scales. To this end we have developed a model that is highly coarse grained, but still features the essential mechanisms determining lipid dynamics, with time scales of picoseconds. This approach allows us to severely restrict the computing times, although we make use of very modest computing equipment. We show in our simulation that the amphiphilic monolayer folds upon contraction of the bubble, and forms micellar aggregates at the air-water interface. Some micellar structures survive consecutive re-expansion and indeed remain persistent over several cycles. These structures may add to the anisotropic behavior of the bubbles under oscillating conditions. We also investigated temperature and frequency dependenc
Aerated bunker discharge of fine dilating powders
The discharge rate of coarse powders (mean particle size 500 ¿m) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradient develops near the hopper outlet, inducing an air flow into the hopper. This extra drag force decreases the discharge rate for fine particles. Aeration of the hopper through a porous cone section will create an opposite pressure gradient, and thereby increase the discharge rate. The aim of this investigation was to incorporate the dilation in an ad hoc way into the model of Altiner in order to improve its predictive power. To test the modified model we carried out experiments with a fluid catalytic cracking powder to study its discharge as a function of aeration. As the improved model needs a dilation parameter as input, the local bulk density was measured during flow at the outlet and at the bin/hopper junction using gamma-ray absorption. At the bin/hopper junction the bulk density was found to be independent of the discharge rate and equal to the bulk density at minimum fluidisation. At the outlet the bulk density goes through a maximum when the amount of aeration gas is increased. Without aeration gas a large dilation, i.e. a 15¿35% lower bulk density, was observed. With these data the model predictions improved from 600% overestimation error to 25¿90% underestimation for pure gravity discharge, and from 100% to 0¿20% error for aerated discharge. However, the bulk density at the outlet cannot be predicted from the powder compressibility, as it seems to depend on dilation at fluidisation
Dynamics of chains grafted on solid wall during polymer melt extrusion
The objective of the present work is the mathematical modeling of the dynamics of polymer molecules grafted on a solid boundary during polymer melt extrusion. This topic is closely related to the long-standing problem of polymer flow instabilities encountered in industry when extruding melts. In order to describe the behavior of the tethered chains, we introduce the bond vector probability distribution function (BVPDF) which appears to be a simple, yet effective mathematical 'tool'. The bond vector, i.e. the tangent vector to a polymer chain depending on the position along the chain and on time, describes the local geometry via its direction and the local stretching of the chain via its length. The BVPDF contains all information about the geometry of the ensemble of chains. Via averaging over the BVPDF we can calculate all interesting macrsocopic quantities, e.g. the thickness of and stress in the layer of tethered molecules. The time dependence of the BVPDF yields the time evolution of the system. We derive the equation of motion for the BVPDF taking into account all important mechanisms, such as reptation and (convective) constraint release. Besides that, we show that all macroscopic quantities of practical interest can be expressed via second order moments of this distribution function. \u
Ferroan dolomite cement in Cambrian sandstones: burial history and hydrocarbon generation of the Baltic sedimentary basin
How to Mix Molecules with Mathematics
In this paper we develop two methods to calculate thermodynamic properties of mixtures. Starting point are the basic assumptions that also form the basis for the COSMO-RS model. In this approach, the individual molecules are represented by their geometrical shape with an electrical charge density on their surfaces. Next, the surface is split up into surface segments each with its own charge. In COSMO-RS a strong reduction is introduced by treating the segments as if they are completely independent. In the present study we take into account that the coupling between two patches is essentially dependent on the charge distribution on neighboring segments and on the local geometrical structure of the surface. Two approaches are followed. The first one points out how the model
equations, which comprise the optimization of the entropy and conservation of internal energy, can efficiently be solved in general, thus also if the dependency between segments and the local geometry is included in the expression for the coupling energy between segments. In the second method the configuration with maximal entropy and prescribed energy is sought via simulation. Successive molecular configurations of the mixture are simulated and updated via a genetic algorithm to optimize the entropy. The second method is more time consuming but very general
A model for vortical plumes in rotating convection
In turbulent rotating convection a typical flow structuring in columnar vortices is observed. In the internal structure of these vortices several symmetries are approximately satisfied. A model for these columnar vortices is derived by prescribing these symmetries. The symmetry constraints are applied to the Navier¿Stokes equations with rotation in the Boussinesq approximation. It is found that the application of the symmetries results in a set of linearized equations. An investigation of the linearized equations leads to a model for the columnar vortices and a prediction for the heat flux (Nusselt number) that is very appropriate compared to the results from direct numerical simulations of the full governing equation
Relationship between hatchling length and weight on later productive performance in broilers
Hatchling length and weight are used as tools to measure hatchling quality. However, the relationship between these parameters and later performance are not well known. This review evaluates the relationship between hatchling length or weight and slaughter weight, breast meat yield and feed conversion ratio (FCR) in both male and female broilers. Datasets from two trials were compared. In the first, hatchling length and weight of 100 male and 100 female broilers were measured and body weight and breast meat yield were determined at 38 days of age. In experiment 2, hatchling length of 187 female and 230 male broilers was measured and body weight was determined at 21 and 42 days of age. Feed intake was determined between 21 and 42 days of age. In both experiments, male broilers showed a positive relationship between hatchling length and slaughter weight or breast meat yield, but no relationship was found with hatchling weight. The relationship between hatchling length and performance in female broilers differed between the two experiments. In female broilers, a negative relationship between hatchling weight and breast meat yield was found. No relationship between hatchling length and FCR in both male and female broilers was found. From this limited dataset, it can be concluded that hatchling length seems to be a better parameter to predict subsequent chick performance, excluding FCR, than hatchling weight, but gender needs to be taken into accoun
Enzymatic activity toward poly(L-lactic acid) implants
Tissue reactions toward biodegradable poly(L-lactic acid) implants were monitored by studying the activity pattern of seven enzymes as a function of time: alkaline phosphatase, acid phosphatase, -naphthyl acetyl esterase, -glucuronidase, ATP-ase, NADH-reductase, and lactate dehydrogenase. Cell types were identified by their specific enzyme patterns, their morphology and location. Special attention was paid to the enzyme patterns of macrophages, fibroblasts and polymorphonuclear granulocytes (PMNs), being involved in foreign body reactions or inflammatory responses. One day after implantation, an influx of neutrophilic and eosinophilic granulocytes was observed, coinciding with activity of alkaline phosphatase (PMN's) and -glucuronidase (eosinophils). From day 3 on, macrophages containing ATP-ase, acid phosphatase and esterase could be observed. From day 7 on, lactate dehydrogenase, the enzyme normally involved in the conversion of lactic acid, and its coenzyme NADH-reductase were observed in macrophages and fibroblasts. These two enzymes demonstrated more activity than expected on basis of wound-healing reactions upon implantation of a nonbiodegradable, inert biomaterial (as, e.g., Teflon). It is concluded that the biodegradable poly (L-lactic acid) used in these implantation studies is tissue compatible, and evokes a foreign body reaction with minor macrophage and giant cell activity, as observed during this 3-week implantation period. Most enzyme patterns were simply due to a wound-healing reaction. The slightly increased levels of LDH and NADH suggest the release of lactic acid from the implant, and thus confirms the biodegradable nature of this polymer
- …
