117,475 research outputs found

    Spinor model of a perfect fluid

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. We have considered two cases where the spinor field nonlinearity occurs either as a result of self-action or due to the interaction with a scalar field.Comment: 5 pages, some misprints are corrected, some new expressions are adde

    Interaction of a circularly polarised gravitational wave with a charged particle in a static magnetic background

    Full text link
    Interaction of a charged particle in a static magnetic background, i.e., a Landau system with circularly polarised gravitational wave (GW) is studied quantum mechanically in the long wavelength and low velocity limit. We quantize the classical Hamiltonian following \cite{speli}. The rotating polarization vectors of the circularly polarized GW are employed to form a unique directional triad which served as the coordinate axes. The Schrodinger equations for the system are cast in the form of a set of coupled linear differential equations. This system is solved by iterative technique. We compute the time-evolution of the position and momentum expectation values of the particle. The results show that the resonance behaviour obtained earlier\cite{emgw_classical} by classical treatements of the system has a quantum analogue not only for the linearly polarized GW \cite{emgw_1_lin}, but for circularly polarized GW as well.Comment: 8 pages, Late

    Nonlinear Spinor Fields and its role in Cosmology

    Full text link
    Different characteristic of matter influencing the evolution of the Universe has been simulated by means of a nonlinear spinor field. Exploiting the spinor description of perfect fluid and dark energy evolution of the Universe given by an anisotropic Bianchi type-VI, VI0_0, V, III, I or isotropic Friedmann-Robertson-Walker (FRW) one has been studied. It is shown that due to some restrictions on metric functions, initial anisotropy in the models Bianchi type-VI, VI0_0, V and III does not die away, while the anisotropic Bianchi type-I models evolves into the isotropic one.Comment: 22 pages, 12 Figure

    Trace of phase-space noncommutativity in the response of a free particle to linearized gravitational waves

    Full text link
    Interaction of linearized gravitational waves with a otherwise free particle has been studied quantum mechanically in a noncommutative phase-space to examine whether the particle's response to the gravitational wave gets modified due to spatial and/or momentum noncommutativity. The result shows that momentum noncommutativity introduces a oscillatory noise with a specific frequency determined by the fundamental momentum scale and particle mass. Because of the global nature of the phase-space noncommutativity such noise will have similar characteristics for all detector sites and thus will stand out in a data cross-correlation procedure. If detected, this noise will provide evidence of momentum noncommutativity and also an estimation of the relevant noncommutative parameter.Comment: 9 pages, Latex, Published version, discussions and references adde

    Noncommutative quantum mechanics of simple matter systems interacting with circularly polarized gravitational waves

    Full text link
    The response of a test particle, both for the free case and under the harmonic oscillator potential, to circularly polarized gravitational waves is investigated in a noncommutative quantum mechanical setting. The system is quantized following the prescription in \cite{ncgw1}. Standard algebraic techniques are then employed to solve the Hamiltonian of the system. The solutions, in both cases, show signatures of the coordinate noncommutativity. In the harmonic oscillator case, this signature plays a key role in altering the resonance point and the oscillation frequency of the system.Comment: 11 pages, LaTe
    corecore