23,773 research outputs found
Efficient nonlinear analysis of elasto-plastic 3D R/C frames using adaptive techniques
Accepted versio
A re-examination of Dithyridium cynocephali Ransom 1905, a metacestode parasite from the thylacine Thylacinus cynocephalus
Re-examination of Dithyridium cynocephali Ransom 1905, a metacestode parasite from the thylacine Thylacinus
cynocephalus, has revealed it to be morphologically indistinguishable from metacestodes of the tapeworm Anoplotaenia dasyuri found in the eastern quoll Dasyurus viverrinus and the spotted-tailed quoll D. maculatus, in Bennett's wallaby Macropus rufogriseus rufogriseus and in the Tasmanian pademelon Thylogale billardierii. The Tasmanian devil Sarcophilus harrisii is the predominant definitive host for A. dasyuri, but the two quoll species can also serve as definitive hosts. It is considered likely that quolls may act as intermediate hosts through the occasional consumption of Tasmanian devil faeces containing infective A. dasyuri eggs. The thylacine may have become infected with A. dasyuri in a similar manner, by engaging in coprophagy in the wild or in captivity
SIRT1 Activity Is Linked to Its Brain Region-Specific Phosphorylation and Is Impaired in Huntington’s Disease Mice
Huntingtons disease (HD) is a neurodegenerative disorder for which there are no disease-modifying treatments. SIRT1 is a NAD+-dependent protein deacetylase that is implicated in maintaining neuronal health during development, differentiation and ageing. Previous studies suggested that the modulation of SIRT1 activity is neuroprotective in HD mouse models, however, the mechanisms controlling SIRT1 activity are unknown. We have identified a striatum-specific phosphorylation-dependent regulatory mechanism of SIRT1 induction under normal physiological conditions, which is impaired in HD. We demonstrate that SIRT1 activity is down-regulated in the brains of two complementary HD mouse models, which correlated with altered SIRT1 phosphorylation levels. This SIRT1 impairment could not be rescued by the ablation of DBC1, a negative regulator of SIRT1, but was linked to changes in the sub-cellular distribution of AMPK-α1, a positive regulator of SIRT1 function. This work provides insights into the regulation of SIRT1 activity with the potential for the development of novel therapeutic strategies
Peer review and citation data in predicting university rankings, a large-scale analysis
Most Performance-based Research Funding Systems (PRFS) draw on peer review and bibliometric indicators, two different method- ologies which are sometimes combined. A common argument against the use of indicators in such research evaluation exercises is their low corre- lation at the article level with peer review judgments. In this study, we analyse 191,000 papers from 154 higher education institutes which were peer reviewed in a national research evaluation exercise. We combine these data with 6.95 million citations to the original papers. We show that when citation-based indicators are applied at the institutional or departmental level, rather than at the level of individual papers, surpris- ingly large correlations with peer review judgments can be observed, up to r <= 0.802, n = 37, p < 0.001 for some disciplines. In our evaluation of ranking prediction performance based on citation data, we show we can reduce the mean rank prediction error by 25% compared to previous work. This suggests that citation-based indicators are sufficiently aligned with peer review results at the institutional level to be used to lessen the overall burden of peer review on national evaluation exercises leading to considerable cost savings
Integrated electronic prescribing and robotic dispensing: a case study
INTRODUCTION: To quantify the benefits of electronic prescribing directly linked to a robotic dispensing machine. CASE DESCRIPTION: Quantitative case study analysis is used on a single case. Hospital A (1,000 beds) has used an integrated electronic prescribing system for 10 years, and in 2009 linked two robotic dispensing machines to the system. The impact on dispensing error rates (quality) and efficiency (costs) were assessed. EVALUATION AND DISCUSSION: The implementation delivered staff efficiencies above expectation. For the out-patient department, this was 16% more than the business case had suggested. For the in-patients dispensary, four staff were released for re-deployment. Additionally, £500,000 in stockholding efficiency above that suggested by the business case was identified. Overall dispensing error rates were not adversely affected and products dispensed by the electronic prescribing - robot system produced zero dispensing errors. The speed of dispensing increased also, as the electronic prescribing - robot combination permitted almost instantaneous dispensing from the point of a doctor entering a prescription. CONCLUSION: It was significant that the combination of electronic prescribing and a robot eliminated dispensing errors. Any errors that did occur were not as a result of the electronic prescribing - robotic system (i.e. the product was not stocked within the robot). The direct linking of electronic prescribing and robots as a dispensing system together produces efficiencies and improves the quality of the dispensing process
Understanding local forces in electrophoretic ink systems: utilizing optical tweezers to explore electrophoretic display devices
Optical tweezers can be used as a valuable tool to characterize electrophoretic display (EPD) systems. EPDs are ubiquitous with e-readers and are becoming a commonplace technology where reflective, low-power displays are required; yet the physics of some features crucial to their operation remains poorly defined. We utilize optical tweezers as a tool to understand the motion of charged ink particles within the devices and show that the response of optically trapped electrophoretic particles can be used to characterize electric fields within these devices. This technique for mapping the force can be compared to simulations of the electric field in our devices, thus demonstrating that the electric field itself is the sole governor of the particle motion in an individual-particle regime. By studying the individual-particle response to the electric field, we can then begin to characterize particle motion in ‘real’ systems with many particles. Combining optical tweezing with particle tracking techniques, we can investigate deviations in many particle systems from the single-particle case
Measuring attitude towards Buddhism and Sikhism : internal consistency reliability for two new instruments
This paper describes and discusses the development and empirical properties of two new
24-item scales – one measuring attitude toward Buddhism and the other measuring attitude
toward Sikhism. The scale is designed to facilitate inter-faith comparisons within the
psychology of religion alongside the well-established Francis Scale of Attitude toward
Christianity. Data were obtained from a multi-religious sample of 369 school pupils aged
between 13 and 15 in London. Application of the two scales demonstrated that adolescents
had a more positive attitude to Buddhism than Sikhism. The findings confirm the reliability
of the scales and commend them for further use
Phosphoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice
Spiral ganglion neurons (SGNs) relay acoustic code from cochlear hair cells to the brainstem, and their stimulation enables electrical hearing via cochlear implants. Rapid adaptation, a mechanism that preserves temporal precision, and a prominent feature of auditory neurons, is regulated via dendrotoxin-sensitive low-threshold voltage-activated (LVA) K(+) channels. Here, we investigated the molecular physiology of LVA currents in SGNs cultured from mice following the onset of hearing (postnatal days 12-21). Kv1.1- and Kv1.2-specific toxins blocked the LVA currents in a comparable manner, suggesting that both subunits contribute to functional heteromeric channels. Confocal immunofluorescence in fixed cochlear sections localized both Kv1.1 and Kv1.2 subunits to specific neuronal microdomains, including the somatic membrane, juxtaparanodes, and the first heminode, which forms the spike initiation site of the auditory nerve. The spatial distribution of Kv1 immunofluorescence appeared mutually exclusive to that of Kv3.1b subunits, which mediate high-threshold voltage-activated currents. As Kv1.2-containing channels are positively modulated by membrane phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-bisphosphate (PIP2) availability on SGN electrophysiology. Reducing PIP2 production using wortmannin, or sequestration of PIP2 using a palmitoylated peptide (PIP2-PP), slowed adaptation rate in SGN populations. PIP2-PP specifically inhibited the LVA current in SGNs, an effect reduced by intracellular dialysis of a nonhydrolysable analog of PIP2. PIP2-PP also inhibited heterologously expressed Kv1.1/Kv1.2 channels, recapitulating its effect in SGNs. Collectively, the data identify Kv1.1/Kv1.2 heteromeric channels as key regulators of action potential initiation and propagation in the auditory nerve, and suggest that modulation of these channels by endogenous phosphoinositides provides local control of membrane excitability
Colony size predicts division of labour in Attine ants
Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity
- …
