1,491 research outputs found
Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence
We investigate the finite sample performance of causal machine learning
estimators for heterogeneous causal effects at different aggregation levels. We
employ an Empirical Monte Carlo Study that relies on arguably realistic data
generation processes (DGPs) based on actual data. We consider 24 different
DGPs, eleven different causal machine learning estimators, and three
aggregation levels of the estimated effects. In the main DGPs, we allow for
selection into treatment based on a rich set of observable covariates. We
provide evidence that the estimators can be categorized into three groups. The
first group performs consistently well across all DGPs and aggregation levels.
These estimators have multiple steps to account for the selection into the
treatment and the outcome process. The second group shows competitive
performance only for particular DGPs. The third group is clearly outperformed
by the other estimators
Chandra Observations of Radio-Loud Quasars at z > 4: X-rays from the Radio Beacons of the Early Universe
We present the results of Chandra observations of six radio-loud quasars
(RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These
observations cover a representative sample of RLQs with moderate radio-loudness
(R ~ 40-400), filling the X-ray observational gap between optically selected
RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the
relationship between X-ray luminosity and radio-loudness for quasars at high
redshift and constrain RLQ X-ray continuum emission and absorption. From a
joint spectral fit of nine moderate-R RLQs observed by Chandra, we find
tentative evidence for absorption above the Galactic N_H, with a best-fit
neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2},
consistent with earlier claims of increased absorption toward high-redshift
RLQs. We also search for evidence of an enhanced jet-linked component in the
X-ray emission due to the increased energy density of the cosmic microwave
background (CMB) at high redshift, but we find neither spatial detections of
X-ray jets nor a significant enhancement in the X-ray emission relative to
comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have
basic X-ray properties consistent with comparable RLQs in the local universe,
suggesting that the accretion/jet mechanisms of these objects are similar as
well.Comment: 12 pages, The Astronomical Journal, in pres
MIPS: The Multiband Imaging Photometer for SIRTF
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700μm spectral region. It will use high performance photoconductive detectors from 3 to 200μm with integrating JFET amplifiers. From 200 to 700μm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution
A molecular insight into algal-oomycete warfare: cDNA analysis of <i>Ectocarpus siliculosus</i> infected with the basal oomycete <i>Eurychasma dicksonii</i>
Brown algae are the predominant primary producers in coastal habitats, and like land plants are subject to disease and parasitism. Eurychasma dicksonii is an abundant, and probably cosmopolitan, obligate biotrophic oomycete pathogen of marine brown algae. Oomycetes (or water moulds) are pathogenic or saprophytic non-photosynthetic Stramenopiles, mostly known for causing devastating agricultural and aquacultural diseases. Whilst molecular knowledge is restricted to crop pathogens, pathogenic oomycetes actually infect hosts from most eukaryotic lineages. Molecular evidence indicates that Eu. dicksonii belongs to the most early-branching oomycete clade known so far. Therefore Eu. dicksonii is of considerable interest due to its presumed environmental impact and phylogenetic position. Here we report the first large scale functional molecular data acquired on the most basal oomycete to date. 9873 unigenes, totalling over 3.5Mb of sequence data, were produced from Sanger-sequenced and pyrosequenced EST libraries of infected Ectocarpus siliculosus. 6787 unigenes (70%) were of algal origin, and 3086 (30%) oomycete origin. 57% of Eu. dicksonii sequences had no similarity to published sequence data, indicating that this dataset is largely unique. We were unable to positively identify sequences belonging to the RXLR and CRN groups of oomycete effectors identified in higher oomycetes, however we uncovered other unique pathogenicity factors. These included putative algal cell wall degrading enzymes, cell surface proteins, and cyclophilin-like proteins. A first look at the host response to infection has also revealed movement of the host nucleus to the site of infection as well as expression of genes responsible for strengthening the cell wall, and secretion of proteins such as protease inhibitors. We also found evidence of transcriptional reprogramming of E. siliculosus transposable elements and of a viral gene inserted in the host genome
Generating single photons at GHz modulation-speed using electrically controlled quantum dot microlenses
We report on the generation of single-photon pulse trains at a repetition
rate of up to 1 GHz. We achieve this high speed by modulating the external
voltage applied on an electrically contacted quantum dot microlens, which is
optically excited by a continuous-wave laser. By modulating the
photoluminescence of the quantum dot microlens using a square-wave voltage,
single-photon emission is triggered with a response time as short as 270 ps
being 6.5 times faster than the radiative lifetime of 1.75 ns. This large
reduction in the characteristic emission time is enabled by a rapid capacitive
gating of emission from the quantum dot placed in the intrinsic region of a
p-i-n-junction biased below the onset of electroluminescence. Here, the rising
edge of the applied voltage pulses triggers the emission of single photons from
the optically excited quantum dot. The non-classical nature of the photon pulse
train generated at GHz-speed is proven by intensity autocorrelation
measurements. Our results combine optical excitation with fast electrical
gating and thus show promise for the generation of indistinguishable single
photons at high rates, exceeding the limitations set by the intrinsic radiative
lifetime.Comment: 7 pages, 3 figure
Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.BMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
The effect of scattering on the structure and SED of protoplanetary disks
In this paper we investigate how the inclusion of scattering of the stellar
radiation into a passive flaring disk model affects its structure and spectral
energy distribution, and whether neglecting it could significantly decrease the
model reliability. In order to address these questions we construct a detailed
1+1D vertical structure model in which the scattering properties of the dust
can be varied. Models are presented with and without dust scattering, and for
different albedos and phase functions. It is found that scattering has the
effect of reducing the disk temperature at all heights, so that the disk
"shrinks", i.e., the the density at all intermediate heights decreases.
However, this effect in most cases is more than compensated by the increase of
the total extinction (absorption + scattering) cross section, so that the
surface scale height increases, and images in scattered light will see a
slightly thicker disk. The integrated infrared emission decreases as the albedo
increases, because an increasing part of the flux captured by the disk is
reflected away instead of absorbed and reprocessed. The reduction of the
infrared thermal emission of the disk is stronger at short wavelengths (near
infrared) and practically negligible at millimeter wavelengths. For relatively
low albedo (alb <~ 0.5), or for strongly forward-peaked scattering (g roughly
>0.8), the infrared flux reduction is relatively small.Comment: Accepted for publication in Astronomy & Astrophysic
Mechanism of Magnetic Flux Loss in Molecular Clouds
We investigate the detailed processes working in the drift of magnetic fields
in molecular clouds. To the frictional force, whereby the magnetic force is
transmitted to neutral molecules, ions contribute more than half only at cloud
densities , and charged grains contribute more
than 90% at . Thus grains play a decisive role
in the process of magnetic flux loss. Approximating the flux loss time by
a power law , where is the mean field strength in
the cloud, we find , characteristic to ambipolar diffusion,
only at . At higher densities,
decreases steeply with , and finally at , where magnetic fields
effectively decouple from the gas, is attained, reminiscent of
Ohmic dissipation, though flux loss occurs about 10 times faster than by Ohmic
dissipation. Ohmic dissipation is dominant only at . While ions and electrons drift in the direction of
magnetic force at all densities, grains of opposite charges drift in opposite
directions at high densities, where grains are major contributors to the
frictional force. Although magnetic flux loss occurs significantly faster than
by Ohmic dissipation even at very high densities as , the process going on at high densities is quite different from ambipolar
diffusion in which particles of opposite charges are supposed to drift as one
unit.Comment: 34 pages including 9 postscript figures, LaTex, accepted by
Astrophysical Journal (vol.573, No.1, July 1, 2002
- …
