44,070 research outputs found

    Periodic solutions to a mean-field model for electrocortical activity

    Full text link
    We consider a continuum model of electrical signals in the human cortex, which takes the form of a system of semilinear, hyperbolic partial differential equations for the inhibitory and excitatory membrane potentials and the synaptic inputs. The coupling of these components is represented by sigmoidal and quadratic nonlinearities. We consider these equations on a square domain with periodic boundary conditions, in the vicinity of the primary transition from a stable equilibrium to time-periodic motion through an equivariant Hopf bifurcation. We compute part of a family of standing wave solutions, emanating from this point.Comment: 9 pages, 5 figure

    Cantorian Infinity and Philosophical Concepts of God

    Get PDF
    It is often alleged that Cantor’s views about how the set theoretic universe as a whole should be considered are fundamentally unclear. In this article we argue that Cantor’s views on this subject, at least up until around 1896, are relatively clear, coherent, and interesting. We then go on to argue that Cantor’s views about the set theoretic universe as a whole have implications for theology that have hitherto not been sufficiently recognised. However, the theological implications in question, at least as articulated here, would not have satisfied Cantor himself

    The dynamics of a low-order coupled ocean-atmosphere model

    Full text link
    A system of five ordinary differential equations is studied which combines the Lorenz-84 model for the atmosphere and a box model for the ocean. The behaviour of this system is studied as a function of the coupling parameters. For most parameter values, the dynamics of the atmosphere model is dominant. For a range of parameter values, competing attractors exist. The Kaplan-Yorke dimension and the correlation dimension of the chaotic attractor are numerically calculated and compared to the values found in the uncoupled Lorenz model. In the transition from periodic behaviour to chaos intermittency is observed. The intermittent behaviour occurs near a Neimark-Sacker bifurcation at which a periodic solution loses its stability. The length of the periodic intervals is governed by the time scale of the ocean component. Thus, in this regime the ocean model has a considerable influence on the dynamics of the coupled system.Comment: 20 pages, 15 figures, uses AmsTex, Amssymb and epsfig package. Submitted to the Journal of Nonlinear Scienc
    corecore