5,246 research outputs found

    GENETIC TESTING PRACTICES OF GENETIC COUNSELORS, GENETICISTS, AND PEDIATRIC NEUROLOGISTS WITH REGARD TO CHILDHOOD-ONSET NEUROGENETIC CONDITIONS

    Get PDF
    Identifying genetic diagnoses for neurological conditions with a considerable hereditary component, such as autism spectrum disorder (ASD), intellectual disability, and epilepsy, is critical to providing proper medical management for these patients and their families. However, many patients with these conditions are not tested appropriately or receive no genetic testing at all. The current study was designed to characterize the genetic testing practices of the providers most likely to evaluate or order genetic testing for these patients: pediatric neurologists, geneticists, and genetic counselors. The study noted significant variance between the testing strategies selected by pediatric neurologists compared to those of geneticists and genetic counselors and supports the need for updated guidelines that are consistent across specialties. Pediatric neurologists report lower confidence with ordering genetic testing and a need and desire for further education regarding genetic testing. This study proposes that the continued integration of genetic counselors into pediatric neurology clinics may improve utilization of genetic testing while reducing the burden on neurologists

    Design of Remote Datalogger Connection and Live Data Tweeting System

    Get PDF
    Low-Impact Development (LID) is an attempt to sustainably respond to the potential hazards posed by urban expansion. Green roofs are an example of LID design meant to reduce the amount of runoff from storm events that are becoming more intense and less predictable while also providing insulation to buildings. LID has not yet been widely adopted as it is often a more expensive alternative to conventional infrastructure (Bowman et. al., 2009). However, its benefits are apparent. The University of Arkansas Honors College awarded a grant to research the large green roof atop Hillside Auditorium. One part of this grant is aimed at educating the public on the benefits LID infrastructure and encourage its development. To accomplish this task, a Raspberry Pi was programmed to operate in tandem with a Campbell Scientific CR1000 datalogger to collect, organize and tweet data to the public under the moniker, “Rufus the Roof.” It is believed that personifying the roof allows data to be conveyed in an entertaining manner that promotes education and public engagement in the LID design. The Raspberry Pi was initially intended to collect data and publish tweets automatically on a live basis. However, automation was not realized due to time constraints and challenges in establishing connection to the datalogger. Instead, a system was developed that allowed the remote transfer of environmental data files from a datalogger on the green roof. Along with remote file transfer protocol, several Python scripts were written that enabled tweets to be published by the Raspberry Pi. The design was successful. Manual remote file transfer and tweeting was achieved. Full automation remains to be achieved, but the Python scripts are built with the capability to operate automatically. The conditions are in place for future development of the project in order to achieve full autonomy. A fully automated system could open the doors for more widespread public engagement in the value and benefits of Low-Impact Development initiatives

    The Publications of the American Real Estate Society: A Decade of Progress

    Get PDF
    One of ARES' initial and central objectives has been the creation and dissemination of knowledge relevant to real estate problem solvers. To achieve this objective and to make the real estate publication market more complete, ARES developed a portfolio of publications. This paper reviews the creation and evolution of The Journal of Real Estate Research, the Journal of Real Estate Literature, the Research Issues in Real Estate monograph series, and The Journal of Real Estate Portfolio Management during ARES' first ten years.

    Blue Cheese Cosmology: Lensing by Cosmic Strings

    Get PDF
    The light bending effects around cosmic strings in universes with varying rates of expansion are investigated. A relationship between the angular deflection and the expansion rate is found. This is made possible by the Blue Cheese model, which is a generalization to a cylindrical realm of the Swiss Cheese mode

    Lya escape from z~0.03 star-forming galaxies: the dominant role of outflows

    Full text link
    The usefulness of H I Lyman-alpha photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detail out to a few x100 Mpc. Past nearby (z<0.3) spectroscopic studies are based on small samples and/or kinematically unresolved data. Taking advantage of the high sensitivity of HST's COS, we observed the Lyman-alpha lines of 20 H-alpha-selected galaxies located at =0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Lyman-alpha lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young (\le 10 Myr) stellar populations, have rest-frame equivalent widths in the range 1-12 \AA, and have Lyman-alpha escape fractions within the COS aperture in the range 1-12 %. One emitter has a double-peaked Lyman-alpha with peaks 370 km/s apart and a stronger blue peak. Excluding this object, the emitters have Lyman-alpha and O I \lambda 1302 offsets from H-alpha in agreement with expanding shell models and LBG observations. The absorbers have offsets that are almost consistent with a static medium. We find no one-to-one correspondence between Lyman-alpha emission and age, metallicity, or reddening. Thus, we confirm that Lyman-alpha is enhanced by outflows and is regulated by the dust and H I column density surrounding the hot stars.Comment: 48 pages, 17 figures, accepted for publication in Ap

    Carbon Abundances in Starburst Galaxies of the Local Universe

    Get PDF
    The cosmological origin of carbon, the fourth most abundant element in the Universe, is not well known and matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in a spectral range from 1600 to 10000 \AA\ on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local Universe. We determined chemical abundances through traditional nebular analysis and we used a Markov Chain Monte Carlo (MCMC) method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] vs. [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O vs. O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise intermediate-mass stars dominate the C and N production.Comment: Accepted for publication in Ap

    A Rare Encounter with Very Massive Stars in NGC 3125-A1

    Full text link
    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He\ii \lam1640 emission (full width at half maximum, FWHM1200FWHM\sim1200 km s1^{-1}) of unprecedented strength (equivalent width, EW=7.1±0.4EW=7.1\pm0.4 \AA). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (\hst). We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(BV)=0.13E(B-V)=0.13, 0.15, and 0.13, and cluster masses of 1.7×1051.7\times10^5, 1.4×1051.4\times10^5, and 1.1×1051.1\times10^5 M_\odot, respectively. A1 and B2 show O\vb \lam1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN56)/N(O)=0.23N(WN5-6)/N(O)=0.23 and 0.10, respectively. The high N(WN56)/N(O)N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal IMF and generic WR star line luminosities. We rule out that the extraordinary He\ii \lam1640 emission and O\vb \lam1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120M>120\,M_\odot) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120M>120\,M_\odot.Comment: Accepted for publication in ApJ. 34 pages, 12 figure

    Shining A Light On Galactic Outflows: Photo-Ionized Outflows

    Full text link
    We study the ionization structure of galactic outflows in 37 nearby, star forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modeled as a co-moving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photo-ionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photo-ionization models constrain the ionization parameter (U) between -2.25 < log(U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z_\odot. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total Hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.Comment: 30 pages, 17 tables, 14 figures. Accepted for publication in MNRA
    corecore