2,168,740 research outputs found

    Mechanism of Gravity Impulse

    Full text link
    It is well-known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.Comment: 10 page

    When Locally Linear Embedding Hits Boundary

    Full text link
    Based on the Riemannian manifold model, we study the asymptotic behavior of a widely applied unsupervised learning algorithm, locally linear embedding (LLE), when the point cloud is sampled from a compact, smooth manifold with boundary. We show several peculiar behaviors of LLE near the boundary that are different from those diffusion-based algorithms. Particularly, LLE converges to a mixed-type differential operator with degeneracy. This study leads to an alternative boundary detection algorithm and two potential approaches to recover the Dirichlet Laplace-Beltrami operator.Comment: 11 Figure

    Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems

    Full text link
    In a recent paper, wavelet analysis was used to perturb the coupling matrix in an array of identical chaotic systems in order to improve its synchronization. As the synchronization criterion is determined by the second smallest eigenvalue λ2\lambda_2 of the coupling matrix, the problem is equivalent to studying how λ2\lambda_2 of the coupling matrix changes with perturbation. In the aforementioned paper, a small percentage of the wavelet coefficients are modified. However, this result in a perturbed matrix where every element is modified and nonzero. The purpose of this paper is to present some results on the change of λ2\lambda_2 due to perturbation. In particular, we show that as the number of systems nn \to \infty, perturbations which only add local coupling will not change λ2\lambda_2. On the other hand, we show that there exists perturbations which affect an arbitrarily small percentage of matrix elements, each of which is changed by an arbitrarily small amount and yet can make λ2\lambda_2 arbitrarily large. These results give conditions on what the perturbation should be in order to improve the synchronizability in an array of coupled chaotic systems. This analysis allows us to prove and explain some of the synchronization phenomena observed in a recently studied network where random coupling are added to a locally connected array. Finally we classify various classes of coupling matrices such as small world networks and scale free networks according to their synchronizability in the limit.Comment: 7 pages, 2 figures, 1 tabl

    Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity

    Full text link
    Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we could see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in earth's gravitational field may form a gravitationally bound quantized state, which had already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are discussed in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.Comment: 12 pages, no figur

    Ballistic transport: A view from the quantum theory of motion

    Full text link
    Ballistic transport of electrons through a quantum wire with a constriction is studied in terms of Bohm's interpretation of quantum mechanics, in which the concept of a particle orbit is permitted. The classical bouncing ball trajectories, which justify the name ``ballistic transport'', are established in the large wave number limit. The formation and the vital role of quantum vortices is investigated.Comment: 14 pages, revtex, 4 postscript figure

    Mechanisms of High Temperature Degradation of Thermal Barrier Coatings.

    Get PDF
    Thermal barrier coatings (TBCs) are crucial for increasing the turbine inlet temperature (and hence efficiency) of gas turbine engines. The thesis describes PhD research aimed at improving understanding of the thermal cycling failure mechanisms of electron beam physical vapour deposited (EB-PVD) yttria stabilised zirconia (YSZ) TBCs on single crystal superalloys. The research consisted of three different stages. The first stage involved designing a coupled one-dimensional thermodynamic-kinetic oxidation and diffusion model capable of predicting the concentration profiles of alloying elements in a single-phase γ nickel-rich Ni-Al-Cr ternary alloy by the finite difference method. The aim of this investigation was to improve the understanding of interactions between alloying species and developing oxide. The model demonstrated that in the early stages of oxidation, Al consumption by oxide scale growth is faster than Al replenishment by diffusion towards the scale, resulting in an initial Al depletion in the alloy near the scale. The second stage involved a systematic study of the life-time of TBC systems on different single crystal superalloys. The study aimed at demonstrating that the compatibility of modern nickel-based single crystal superalloys with TBC systems is influenced strongly by the content of alloying element additions in the superalloy substrate. The results can be explained by postulating that the fracture toughness parameters controlling decohesion are influenced strongly by small changes in composition arising from interdiffusion with the bond coat, which itself inherits elemental changes from the substrate. The final stage of study involved a detailed study of different bond coats (two β-structured Pt-Al types and a γ/γ’ Pt-diffusion type) in TBC systems based on an EB-PVD YSZ top coat and a substrate material of CMSX-4 superalloy. Generation of stress in the thermally grown oxide (TGO) on thermal cycling, and its relief by plastic deformation and fracture, were investigated experimentally in detail

    Operators on random hypergraphs and random simplicial complexes

    Full text link
    Random hypergraphs and random simplicial complexes have potential applications in computer science and engineering. Various models of random hypergraphs and random simplicial complexes on n-points have been studied. Let L be a simplicial complex. In this paper, we study random sub-hypergraphs and random sub-complexes of L. By considering the minimal complex that a sub-hypergraph can be embedded in and the maximal complex that can be embedded in a sub-hypergraph, we define some operators on the space of probability functions on sub-hypergraphs of L. We study the compositions of these operators as well as their actions on the space of probability functions. As applications in computer science, we give algorithms generating large sparse random hypergraphs and large sparse random simplicial complexes.Comment: 22 page
    corecore