1,994 research outputs found
Scattered light mapping of protoplanetary disks
High-contrast scattered light observations have revealed the surface
morphology of several dozens of protoplanetary disks at optical and
near-infrared wavelengths. Inclined disks offer the opportunity to measure part
of the phase function of the dust grains that reside in the disk surface which
is essential for our understanding of protoplanetary dust properties and the
early stages of planet formation. We aim to construct a method which takes into
account how the flaring shape of the scattering surface of an (optically thick)
protoplanetary disk projects onto the image plane of the observer. This allows
us to map physical quantities (scattering radius and scattering angle) onto
scattered light images and retrieve stellar irradiation corrected (r^2-scaled)
images and dust phase functions. We apply the method on archival polarized
intensity images of the protoplanetary disk around HD 100546 that were obtained
with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side
of the r^2-scaled R'-band polarized intensity image of HD 100546 changes from
the far to the near side of the disk when a flaring instead of a geometrically
flat disk surface is used for the r^2-scaling. The decrease in polarized
surface brightness in the scattering angle range of ~40-70 deg is likely a
result of the dust phase function and degree of polarization which peak in
different scattering angle regimes. The derived phase functions show part of a
forward scattering peak which indicates that large, aggregate dust grains
dominate the scattering opacity in the disk surface. Projection effects of a
protoplanetary disk surface need to be taken into account to correctly
interpret scattered light images. Applying the correct scaling for the
correction of stellar irradiation is crucial for the interpretation of the
images and the derivation of the dust properties in the disk surface layer.Comment: Accepted for publication in A&A, 6 pages, 3 figure
Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA
Planets form in protoplanetary disks and inherit their chemical compositions.
It is thus crucial to map the distribution and investigate the formation of
simple organics, such as formaldehyde and methanol, in protoplanetary disks. We
analyze ALMA observations of the nearby disk-jet system around the T Tauri star
DG Tau in the o-HCO and CHOH E,
A transitions at an unprecedented resolution of ,
i.e., au at a distance of 121 pc. The HCO emission originates from
a rotating ring extending from au with a peak at au, i.e., at
the edge of the 1.3mm dust continuum. CHOH emission is not detected down to
an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para
ratio of 1.8-2.8 the ring- and disk-height-averaged HCO column density is
cm, while that of CHOH is
cm. In the inner au no o-HCO emission
is detected with an upper limit on its beam-averaged column density of
cm. The HCO ring in the disk of DG Tau is
located beyond the CO iceline (R au). This suggests that the
HCO abundance is enhanced in the outer disk due to formation on grain
surfaces by the hydrogenation of CO ice. The emission peak at the edge of the
mm dust continuum may be due to enhanced desorption of HCO in the gas phase
caused by increased UV penetration and/or temperature inversion. The
CHOH/HCO abundance ratio is , in agreement with disk chemistry
models. The inner edge of the HCO ring coincides with the radius where the
polarization of the dust continuum changes orientation, hinting at a tight link
between the HCO chemistry and the dust properties in the outer disk and at
the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter
DZ Cha: a bona fide photoevaporating disc
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright
protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line
and infrared spectral energy distribution suggest that DZ Cha may be a
photoevaporating disc. We aim to analyse the DZ Cha star + disc system to
identify the mechanism driving the evolution of this object. We have analysed
three epochs of high resolution optical spectroscopy, photometry from the UV up
to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry
observations of DZ Cha. Combining our analysis with previous studies we find no
signatures of accretion in the \Ha line profile in nine epochs covering a
time baseline of years. The optical spectra are dominated by
chromospheric emission lines, but they also show emission from the forbidden
lines [SII] 4068 and [OI] 6300 that indicate a disc outflow. The
polarized images reveal a dust depleted cavity of au in radius and two
spiral-like features, and we derive a disc dust mass limit of
M_\mathrm{dust}
80 \MJup) companions are detected down to 0\farcs07 ( au,
projected). The negligible accretion rate, small cavity, and forbidden line
emission strongly suggests that DZ Cha is currently at the initial stages of
disc clearing by photoevaporation. At this point the inner disc has drained and
the inner wall of the truncated outer disc is directly exposed to the stellar
radiation. We argue that other mechanisms like planet formation or binarity
cannot explain the observed properties of DZ Cha. The scarcity of objects like
this one is in line with the dispersal timescale ( yr) predicted
by this theory. DZ Cha is therefore an ideal target to study the initial stages
of photoevaporation.Comment: A&A in press, language corrections include
Targeting COX-2/PGE(2) pathway in HIPK2 knockdown cancer cells: impact on dendritic cell maturation.
production after HIPK2 depletion and how to modulate it./VEGF production. At translational level, while conditioned media of both siRNA control and HIPK2 depleted cells inhibited DCs maturation, conditioned media of only zinc-treated HIPK2 depleted cells efficiently restored DCs maturation, seen as the expression of co-stimulatory molecules CD80 and CD86, cytokine IL-10 release, and STAT3 phosphorylation./VEGF production; and 3) zinc treatment of HIPK2 depleted cells restored DCs maturation
Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging
The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in
a transition stage and shows many intriguing structures both in scattered light
and thermal (sub-)millimeter emission which are possibly related to planet
formation processes. We study the morphology and surface brightness of the disk
in scattered light to gain insight into the innermost disk regions, the
formation of protoplanets, planet-disk interactions traced in the surface and
midplane layers, and the dust grain properties of the disk surface. We have
carried out high-contrast polarimetric differential imaging (PDI) observations
with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in R-
and I-band and with IRDIS in Y- and J-band. The scattered light images reveal
with unprecedented angular resolution and sensitivity the spiral arms as well
as the 25 au cavity of the disk. Multiple shadow features are discovered on the
outer disk with one shadow only being present during the second observation
epoch. A positive surface brightness gradient is observed in the stellar
irradiation corrected images in southwest direction possibly due to an
azimuthally asymmetric perturbation of the temperature and/or surface density
by the passing spiral arms. The disk integrated polarized flux, normalized to
the stellar flux, shows a positive trend towards longer wavelengths which we
attribute to large aggregate dust grains in the disk surface. Part of the the
non-azimuthal polarization signal in the Uphi image of the J-band observation
could be the result of multiple scattering in the disk. The detected shadow
features and their possible variability have the potential to provide insight
into the structure of and processes occurring in the innermost disk regions.Comment: Accepted for publication in A&A, 20 pages, 15 figure
Exploring dust around HD142527 down to 0.025" / 4au using SPHERE/ZIMPOL
We have observed the protoplanetary disk of the well-known young Herbig star
HD 142527 using ZIMPOL Polarimetric Differential Imaging with the VBB (Very
Broad Band, ~600-900nm) filter. We obtained two datasets in May 2015 and March
2016. Our data allow us to explore dust scattering around the star down to a
radius of ~0.025" (~4au). The well-known outer disk is clearly detected, at
higher resolution than before, and shows previously unknown sub-structures,
including spirals going inwards into the cavity. Close to the star, dust
scattering is detected at high signal-to-noise ratio, but it is unclear whether
the signal represents the inner disk, which has been linked to the two
prominent local minima in the scattering of the outer disk, interpreted as
shadows. An interpretation of an inclined inner disk combined with a dust halo
is compatible with both our and previous observations, but other arrangements
of the dust cannot be ruled out. Dust scattering is also present within the
large gap between ~30 and ~140au. The comparison of the two datasets suggests
rapid evolution of the inner regions of the disk, potentially driven by the
interaction with the close-in M-dwarf companion, around which no polarimetric
signal is detected.Comment: 11 pages, 7 figures, accepted for publication in A
Variable dynamics in the inner disk of HD 135344B revealed with multi-epoch scattered light imaging
This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.MB acknowledges funding from ANR of France under
contract number ANR-16-CE31-0013 (Planet Forming
Disks). SP acknowledges support from CONICYTGemini
grant 32130007. SK acknowledges support from
an STFC Rutherford fellowship (ST/J004030/1) and an
ERC Starting Grant (Grant Agreement No. 639889)
High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity
Planet formation studies are often focused on solar-type stars, implicitly
considering our Sun as reference point. This approach overlooks, however, that
Herbig Ae/Be stars are in some sense much better targets to study planet
formation processes empirically, with their disks generally being larger,
brighter and simply easier to observe across a large wavelength range. In
addition, massive gas giant planets have been found on wide orbits around early
type stars, triggering the question if these objects did indeed form there and,
if so, by what process. In the following I briefly review what we currently
know about the occurrence rate of planets around intermediate mass stars,
before discussing recent results from Herbig Ae/Be stars in the context of
planet formation. The main emphasis is put on spatially resolved polarized
light images of potentially planet forming disks and how these images - in
combination with other data - can be used to empirically constrain (parts of)
the planet formation process. Of particular interest are two objects, HD100546
and HD169142, where, in addition to intriguing morphological structures in the
disks, direct observational evidence for (very) young planets has been
reported. I conclude with an outlook, what further progress we can expect in
the very near future with the next generation of high-contrast imagers at 8-m
class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in
special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables
and reference
Characterizing HR3549B using SPHERE
Aims. In this work, we characterize the low mass companion of the A0 field
star HR3549. Methods. We observed HR3549AB in imaging mode with the the NIR
branch (IFS and IRDIS) of SPHERE@VLT, with IFS in YJ mode and IRDIS in the H
band. We also acquired a medium resolution spectrum with the IRDIS long slit
spectroscopy mode. The data were reduced using the dedicated SPHERE GTO
pipeline, purposely designed for this instrument. We employed algorithms such
as PCA and TLOCI to reduce the speckle noise. Results. The companion was
clearly visible both with IRDIS and IFS.We obtained photometry in four
different bands as well as the astrometric position for the companion. Based on
our astrometry, we confirm that it is a bound object and put constraints on its
orbit. Although several uncertainties are still present, we estimate an age of
~100-150 Myr for this system, yielding a most probable mass for the companion
of 40-50MJup and T_eff ~300-2400 K. Comparing with template spectra points to a
spectral type between M9 and L0 for the companion, commensurate with its
position on the color-magnitude diagram.Comment: Accepted by A&A, 13 pages, 10 Figures (Figures 9 and 10 degraded to
reduce the dimension
- …
