689 research outputs found

    Tree stem-atmosphere greenhouse gas fluxes in a boreal riparian forest

    Get PDF
    Tree stems exchange greenhouse gases with the atmosphere but the magnitude, variability and drivers of these fluxes remain poorly understood. Here, we report stem fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in a boreal riparian forest, and investigate their spatiotemporal variability and ecosystem level importance. For two years, we measured CO2 and CH4 fluxes on a monthly basis in 14 spruces (Picea abies) and 14 birches (Betula pendula) growing near a headwater stream affected by historic ditching. We also measured N2O fluxes on three occasions. All tree stems were net emitters of CO2 and CH4, while N2O fluxes were around zero. CO2 fluxes correlated strongly with air temperature and peaked in summer. CH4 fluxes correlated modestly with air temperature and solar radiation and peaked in late winter and summer. Trees with larger stem diameter emitted more CO2 and less CH4 and trees closer to the stream emitted more CO2 and CH4. The CO2 and CH4 fluxes did not differ between spruce and birch, but correlations of CO2 fluxes with stem diameter and distance to stream differed between the tree species. The absence of vertical trends in CO2 and CH4 fluxes along the stems and their low correlation with groundwater levels and soil CO2 and CH4 partial pressures suggest tree internal production as the primary source of stem emissions. At the ecosystem level, the stem CO2, CH4 and N2O emissions represented 52 +/- 16 % of the forest floor CO2 emissions and 3 +/- 1 % and 11 +/- 40 % of the forest floor CH4 and N2O uptake, respectively, during the snow-free period (median +/- SE). The six month snow-cover period contributed 11 +/- 45 % and 40 +/- 29 % to annual stem CO2 and CH4 emissions, respectively. Overall, the stem gas fluxes were more typical for upland rather than wetland ecosystems likely due to historic ditching and subsequent groundwater level decrease

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget

    Plant functional type and peat properties determine elemental transfer in boreal mire vegetation

    Get PDF
    Uptake of elements into plants is an integral part of many environmental impact assessments. Typically, the plant uptake is determined using an empirical soil-to-plant transfer factor (CR). The elemental concentrations in plants are expected to vary with plant species and plant functional type (PFT), but also according to soil and element properties. Specifically, the uptake of essential elements is regulated, and likely less related to soil concentrations than the uptake of non-essential elements. In this study, the impact of PFT, species and environmental factors on the CR of mire plants was tested. The plants included in the study were four common boreal peatland species (Andromeda polifolia, Vaccinium oxycoccus, Eriophorum vaginatum and Carex rostrata) sampled from 40 minerogenic mires along an age gradient.The results show that while plant species and PFT (heathers and sedges) are the main determinants of the CR value, also environmental factors, such as peat C:N ratio, are important. Further, concentrations of essential elements in plants were only weakly correlated to peat concentrations, whereas the correlation was stronger for non-essential elements and elements utilized at trace amounts.The results of this study verify that CR values may vary substantially between peatland plant species and PFTs. Further, the results suggest that it is relevant to include effects of PFTs on CR and among-species variation in environmental impact assessments. This is because the PFT may have a large impact on the exposure pathways to humans, which could, for example, be berries or animal feed, and also due to the uncertainties of the composition of the future vegetation communities. Since CR varies systematically with several soil properties, there may be potential for adjusting the CR values for expected environmental changes, and thereby reduce the uncertainties of empirical CR values determined from a broad range of environmental conditions

    Nitrogen fertilization increases N2O emission but does not offset the reduced radiative forcing caused by the increased carbon uptake in boreal forests

    Get PDF
    Net primary production in boreal coniferous forests is generally severely limited by N deficiency. Nitrogen fertilization has thus the potential to strongly increase forest tree biomass production in the boreal region and consequently increase the biosphere uptake of atmospheric CO2. Increased N availability may though increase the production and emission of soil N2O, counteracting the climate mitigation potential from increased forest biomass production. Studies in the boreal region on the net effect on the climate mitigation potential from N fertilization are scarcer than in other biomes. Therefore, we explored how N affected soil GHG fluxes in two boreal field N-loading experiments, of which one is a long-term experiment (40 years), and the other established 6 years before investigation. We also estimated whether the increased soil N2O emission could offset the N-driven increased C sequestration by the trees. Nitrogen additions affected the soil GHG fluxes in both stands. Soil N2O emission was enhanced by N addition at every fertilization rate, though marginally compared to the reduced soil CO2 emission and the increased atmospheric CO2 uptake and biomass production. The estimated annual uptake of CH4 by soil under long-term N addition increased. The magnitude of soil CH4 uptake was on the same order of magnitude as the increase in soil N2O emissions caused by N addition, when compared as CO2 equivalents. In conclusion, forest N fertilization in boreal areas increased the GHG net uptake and, thus, provides a means to mitigate increasing atmospheric concentrations of GHG

    Unraveling the dynamics of lignin chemistry on decomposition to understand its contribution to soil organic matter accumulation

    Get PDF
    Aims Plant inputs are the primary organic carbon source that transforms into soil organic matter (SOM) through microbial processing. One prevailing view is that lignin plays a major role in the accumulation of SOM. This study investigated lignin decomposition using wood from different genotypes of Populus tremula as the model substrate. The genotypes naturally varied in lignin content and composition, resulting in high and low lignin substrates.Methods The wood was inoculated with fresh soil and decomposition was interpreted through mass loss and CO2 produced during a 12-month lab incubation. Detailed information on the decomposition patterns of lignin was obtained by Two-dimensional Nuclear magnetic resonance (2D NMR) spectroscopy on four occasions during the incubations.Results The lignin content per se did not affect the overall decomposition and similar to 60% of the mass was lost in both substrates. In addition, no differences in oxidative enzyme activity could be observed, and the rate of lignin decomposition was similar to that of the carbohydrates. The 2D NMR analysis showed the oxidized syringyl present in the initial samples was the most resistant to degradation among lignin subunits as it followed the order p-hydroxybenzoates > syringyl > guaiacyl > oxidized syringyl. Furthermore, the degradability of beta-O-4 linkages in the lignin varied depending on the subunit (syringyl or guaiacyl) it is attached to.Conclusions Our study demonstrates that lignin contains fractions that are easily degradable and can break down alongside carbohydrates. Thus, the initial differences in lignin content per se do not necessarily affect magnitude of SOM accumulation

    Ditches show systematic impacts on soil and vegetation properties across the Swedish forest landscape

    Get PDF
    Novel mapping methods using AI have led to improved mapping of the extent of drainage systems, but the full scope of the effects of drainage on ecosystems has yet to be understood. By combining ditches mapped with remote sensing and AI methods with soil data from the Swedish Forest Soil Inventory, and vegetation data from the National Forest Inventory we identified 4 126 survey plots within 100 m of a ditch. The inventory data span across three biomes; the northern boreal zone, the hemiboreal zone, and the temperate zone. We explored if soils and vegetation close to ditches were indeed different from the surrounding landscape. The large number of plots spread widely across the Swedish forest landscape spanning different physiographic regions, climates, topography, soils, and vegetation made it possible to identify the general effect of drainage on soil properties, tree productivity, and plant species composition. We found a surprisingly large amount of ditches on mineral soils (50-70%, depending on the definition of peatlands). Forest growth was affected, with higher growth rates of trees closer to ditches, particularly Norway spruce. Sphagnum mosses - a key indicator of wet soils - were less common near ditches, where they were replaced by feather mosses. The soil bulk density was higher closer to ditches, as was the concentration of metals that are typically associated with organic matter (Al), while concentrations of metals with a lower affinity for organic material decreased toward ditches (Na, K, Mg). The results from mineral soils and peat soils often differed. For example, N and tree volume increased toward ditches, but on different levels for peat and mineral soils, while the thickness of the humus layer and Pleurozium schreberi cover showed opposite patterns for the different soils. Clearly, ditches have affected the entire Swedish forest landscape, driving it towards a drier, more spruce-dominated productive forested ecosystem and away from wetland ecosystems like mires and littoral areas along streams. Furthermore, the biogeochemistry of the soils and understory species cover near ditches have changed, potentially irreversibly, at least within human time frames, and have implications for restoration goals and the future of forestry
    corecore