25 research outputs found
The oral microbiome – an update for oral healthcare professionals
For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare
A comparative study of ultrasonic direct contact, immersion, and layer resonance methods for assessment of enamel thickness in teeth
Wear of dental enamel is a growing problem, but is clinically difficult to diagnose and monitor. An accurate and easy-to-use non-destructive method for the measurement of enamel thickness would be useful for early diagnosis of enamel loss and for monitoring progression. Ultrasound has been identified by several researchers as a potential tool suitable for enamel thickness measurement. However, in vitro studies have shown that while the method is feasible, it suffers from wide variability. The methods proposed to date rely on the measurement of the time of flight of an ultrasonic pulse through the enamel layer. This requires the operator to locate the enamel-dentine junction. In this work, three methods are evaluated to try to reduce this variability and to investigate some practicalities of the approach. Time-of-flight methods using both contact and immersion transducers were used. Immersion transducers gave the most accurate results, within 10-15 per cent of values deduced from tooth sections, but would be harder to arrange for in vivo measurements. Preliminary studies have also shown that it is possible to achieve a resonance in the enamel layer and to measure thickness that way. While this approach needs further experimental refinement, it has the potential to be used for much thinner enamel layer thicknesses
Benefits and challenges of the integration of haptics-enhanced virtual reality training within dental curricula
Background: Haptics-enhanced virtual reality (VR-haptic) simulation in dental education has evolved considerably during the past decade, representing a promising resource of simulation-based training opportunities to support conventional practice. We aim to summarize current literature on the applications of VR-haptics in learning, practicing, and teaching dental education.
Methods: A literature search was performed using PubMed, focusing on research articles published between January 2010 and January 2024. Out of the 667 articles that matched the search terms (dentistry, education, haptic, teaching, training, virtual reality), 105 were screened, and 42 were eligible for full-text reading and utilization. Findings from an ongoing educator survey on the use of VR-haptics in dental education have also been provided.
Results: VR-haptic simulation has been shown to have a supportive role in dental simulation practice. Despite training within a digital world, hand skill transfer to the real world has been demonstrated, which affords educators more flexibility in how to train their students before and during traditional preclinical and clinical practical education. The individualized VR-haptic training and feedback help students in mastering essential working techniques, while also increasing engagement and motivation.
Conclusions: VR-haptics-supported dental education can help students effectively address challenges during their preclinical and clinical training, as well as in their subsequent careers, and it may help mitigate some weaknesses of the current educational system. Validation is a key factor for the acceptance of VR-haptic simulators; thus, further research and verification are needed before VR-haptics could be considered a primary hand skill development method of learning in dental education. VR-haptic simulation may in the future be used as an assessment tool for the students’ and clinicians’ credentialing process.publishedVersio
The Effect of Heat Treatment and Feldspathic Glazing on Some Mechanical Properties of Zirconia
Fluoride content and recharge ability of five glassionomer dental materials
<p>Abstract</p> <p>Background</p> <p>The relationship between fluoride content and fluoride release for glass-ionomer cements is not well understood. The aim of this laboratory study was: to determine the fluoride concentrations at the surfaces of glass-ionomer materials with respect to different storage media and different pH environments; to examine the recharge ability of the materials after NaF immersion; and to assess the morphological changes at the material surfaces using scanning electron microscope and energy dispersive spectroscopic techniques (SEM/EDS).</p> <p>Methods</p> <p>Five glass-ionomer materials, Fuji Triage (FT), Fuji II LC (FII), Fuji VIII (FVIII), Fuji IX GP (FIX), and Ketac N100 (KN), were analyzed in this study. Resin-based fluoride releasing material Helioseal F (HSF) was used as a comparison material. The sample consisted of 120 cured cement disks (n = 20 disks of each tested material, 10 × 1.5 mm). Five disks of each material were stored in 4 different storage media (I- saline, II- acidic solution ph = 2.5, III- acid solution ph = 5.5, IV- NaF solution (c = 500/106). After 7 days, two disks of each material were transferred from media I, II and III to the NaF solution for 3 min. EDS analysis was conducted in 3 randomly selected spots of each experimental disk. SEM was used to determine morphological characteristics of the material surface. Differences between the experimental groups have been analyzed using Student's t-test with the level of significance set at p < 0.001.</p> <p>Results</p> <p>FT showed the highest fluoride content at the surface of the material. The lowest amounts of fluoride ions were detected at the surfaces of the FT disks stored at low pH environments, and this difference was statistically significant (p < 0.001). Glass-ionomers showed significantly higher fluoride concentrations when compared to the HSF (p < 0.001). After immersion in the NaF solution, fluoride concentrations at the surfaces of the disks increased when compared with previous storage media (FT>FVIII>KN>FII>FIX). SEM analysis of the surface morphology revealed numerous voids, cracks and microporosities in all experimental groups, except for KN and HSF. More homogenous material structure with more discrete cracks was observed in samples stored at neutral pH environment, compared to disks stored in acidic solutions.</p> <p>Conclusion</p> <p>The tested materials could be considered as promising dental materials with potential prophylactic characteristics due to their relatively high fluoride content, but also the ability to extensively reabsorb fluoride ions, especially in acidic environments.</p
Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic
Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15): a control group (labeled CG, untreated), and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80); 160 µm (G120), and 25 µm (G600), either untreated or heat-treated at 1200°C for 2 h (labeled A). Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz) and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m) phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals
Water sorption and solubility of polyamide denture base materials
Purpose: Some patients experience adverse reactions to poly(methyl methacrylate)-based (PMMA) dentures. Polyamide (PA) as an alternative to PMMA has, however, not been well documented with regard to water sorption and water solubility. The aim of this in vitro study was to measure water sorption and water solubility of two PA materials compared with PMMA, and to evaluate the major components released from the PA materials and the effect on hardness of the materials. Methods: Ten discs (40.0 mm diameter, 2.0 mm thick) of each material (PA: Valplast and Breflex; PMMA: SR Ivocap HIP) were prepared according to manufacturers’ recommendations. The specimens were tested for water sorption and water solubility, according to a modification of ISO 20795-1:2008. Released substances were analysed by gas chromatography/mass spectrometry (GC/MS). Results: There were statistically significant differences among the materials regarding water sorption, water solubility and time to water saturation. Breflex had the highest water sorption (30.4 μg/mm3), followed by PMMA-material (25.8 μg/mm3) and Valplast (13.6 μg/mm3). Both PA materials had statistically significant lower water solubility than the PMMA. Both PA had a net increase in weight. Analysis by GC/MS identified release of the compound 12-aminododecanolactam from the material Valplast. No release was found from the Breflex material. Conclusions: The PA denture materials show differences in water sorption and solubility, but within the limits of the standard requirements. The PA showed a net increase in weight after long-term water sorption. The clinical implications of the findings are not elucidated
