630 research outputs found

    Submonolayer growth with decorated island edges

    Full text link
    We study the dynamics of island nucleation in the presence of adsorbates using kinetic Monte Carlo simulations of a two-species growth model. Adatoms (A-atoms) and impurities (B-atoms) are codeposited, diffuse and aggregate subject to attractive AA- and AB-interactions. Activated exchange of adatoms with impurities is identified as the key process to maintain decoration of island edges by impurities during growth. While the presence of impurities strongly increases the island density, a change in the scaling of island density with flux, predicted by a rate equation theory for attachment-limited growth [D. Kandel, Phys. Rev. Lett. 78, 499 (1997)], is not observed. We argue that, within the present model, even completely covered island edges do not provide efficient barriers to attachment.Comment: 7 pages, 2 postscript figure

    Re-entrant Layer-by-Layer Etching of GaAs(001)

    Full text link
    We report the first observation of re-entrant layer-by-layer etching based on {\it in situ\/} reflection high-energy electron-diffraction measurements. With AsBr3_3 used to etch GaAs(001), sustained specular-beam intensity oscillations are seen at high substrate temperatures, a decaying intensity with no oscillations at intermediate temperatures, but oscillations reappearing at still lower temperatures. Simulations of an atomistic model for the etching kinetics reproduce the temperature ranges of these three regimes and support an interpretation of the origin of this phenomenon as the site-selectivity of the etching process combined with activation barriers to interlayer adatom migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press

    Modeling sublimation by computer simulation: morphology dependent effective energies

    Full text link
    Solid-On-Solid (SOS) computer simulations are employed to investigate the sublimation of surfaces. We distinguish three sublimation regimes: layer-by-layer sublimation, free step flow and hindered step flow. The sublimation regime is selected by the morphology i.e. the terrace width. To each regime corresponds another effective energy. We propose a systematic way to derive microscopic parameters from effective energies and apply this microscopical analysis to the layer-by-layer and the free step flow regime. We adopt analytical calculations from Pimpinelli and Villain and apply them to our model. Key-Words: Computer simulations; Models of surface kinetics; Evaporation and Sublimation; Growth; Surface Diffusion; Surface structure, morphology, roughness, and topography; Cadmium tellurideComment: 12 pages, 6 Postscript figures, uses psfig.st

    Actes de la conférence conjointe JEP-TALN-RECITAL 2016, volume 09 : ELTAL

    Get PDF
    National audienceELTAL is a workshop organized within the JEP-TALN-RECITAL 2016 conference. This workshop brings together papers investigating metdods and applications in NLP applied to language teaching.ELTAL est un atelier organisé au sein de la conférence JEP-TALN-RECITAL 2016 et regroupe des contributions qui étudient les méthodes et les applications en TAL dans le domaine de l'enseignement des langues

    Micromechanical Analysis of Cement Paste with Carbon Nanotubes

    Get PDF
    Carbon nanotubes (CNT) are an attractive reinforcement material for several composites, due to their inherently high strength and high modulus of elasticity. There are controversial results for cement paste with admixed CNT up to 500 µm in length. Some results show an increase in flexural or compressive strength, while others showing a decrease in the values. Our experiments produced results that showed a small increase in fracture energy and tensile strength. Micromechanical simulations on a CNT-reinforced cement paste 50×50 µm proved that CNT clustering is the crucial factor for an increasein fracture energy and for an improvement in tensile strength

    Kinetic Roughening in Growth Models with Diffusion in Higher Dimensions

    Full text link
    We present results of numerical simulations of kinetic roughening for a growth model with surface diffusion (the Wolf-Villain model) in 3+1 and 4+1~dimensions using lattices of a linear size up to L=64L=64 in 3+1~D and L=32L=32 in 4+1~D. The effective exponents calculated both from the surface width and from the height--height correlation function are much larger than those expected based on results in lower dimensions, due to a growth instability which leads to the evolution of large mounded structures on the surface. An increase of the range for incorporation of a freshly deposited particle leads to a decrease of the roughness but does not suppress the instability.Comment: 8 pages, LaTeX 2.09, IC-DDV-93-00

    Evaporation and Step Edge Diffusion in MBE

    Full text link
    Using kinetic Monte-Carlo simulations of a Solid-on-Solid model we investigate the influence of step edge diffusion (SED) and evaporation on Molecular Beam Epitaxy (MBE). Based on these investigations we propose two strategies to optimize MBE-growth. The strategies are applicable in different growth regimes: during layer-by-layer growth one can reduce the desorption rate using a pulsed flux. In three-dimensional (3D) growth the SED can help to grow large, smooth structures. For this purpose the flux has to be reduced with time according to a power law.Comment: 5 pages, 2 figures, latex2e (packages: elsevier,psfig,latexsym

    HYDRATION OF PLASMATREATED ALUMOSILICATE BINDERS

    Get PDF
    Plasma treatment offers several applications in material science. In this research, the potential of plasma treatment is explored on the hydration of hydrophilic CNT-enriched cement and hydrophilic fly ash. The evolution of the hydration heat and the compressive strength show that a hydrophilic surface slightly accelerates the early-age hydration kinetics, while the long-term properties remain unchanged

    Unstable Growth and Coarsening in Molecular-Beam Epitaxy

    Full text link
    The coarsening dynamics of three-dimensional islands on a growing film is discussed. It is assumed that the origin of the initial instability of a planar surface is the Ehrlich-Schwoebel step-edge barrier for adatom diffusion. Two mechanisms of coarsening are identified: (i) surface diffusion driven by an uneven distribution of bonding energies, and (ii) mound coalescence driven by random deposition. Semiquantitative estimates of the coarsening time are given in each case. When the surface slope saturates, an asymptotic dynamical exponent z=4z=4 is obtained.Comment: 12 pages, 4 figure
    corecore