123 research outputs found
Emise PCDD/F při spalování různých druhů dřeva, biopaliv a uhlí v malých spalovacích zařízeních
Legal situation and current practice of waste incineration bottom ash utilisation in Europe
Almost 500 municipal solid waste incineration plants in the EU, Norway, and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt.%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances
Mitigation of gaseous mercury emissions from waste-to-energy facilities: Homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes
This study describes the main mechanisms that take part in the mercury homogeneous oxidation pathway in presence of some of the main reactive compounds formed during waste incineration processes (O2, HCl, SO2 and NO). Series of model, synthetic dry flue gases were used to elucidate the effects of HCl, SO2, NO and their proportions in the gas on mercury behaviour. Three samples of fly ash collected from a MSWI facility were characterized and evaluated both for Hg heterogeneous oxidation and Hg removal in a laboratory scale device. The results obtained in this study showed that homogeneous mercury oxidation in the models MSWI and coal combustion flue gas atmospheres was 52 ± 5% and 25%, respectively. SO2, NO and HCl have a synergetic effect in Hg oxidation in presence of oxygen, but the main differences found are mainly caused by the strong influence of HCl and the likely inhibitory oxidation effects of SO2. Surface area together with carbon and chloride content of the fly ashes were correlated with their capacity for Hg-heterogeneous oxidation and adsorption. The sample of fly ash with relatively high content of unburnt carbon and chlorine, and with BET surface (2.42 m2/g) was able to remove up to 100% of Hg0 (g) during 300 min. The results obtained in this study provide a complete overview of the behaviour of mercury during MSWI processes and may help to clarify the fate/behaviour of mercury in a filter (e.g. electrostatic precipitator) providing a deeper knowledge about the impacts of fly ash properties on mercury fate in waste incineration
Mercury removal from MSW incineration flue gas by mineral-based sorbents
Three samples of commercially available mineral-based sorbents (zeolite, bentonite and diatomaceous earth) were selected and evaluated for Hg capture under conditions of simulated dry flue gas atmosphere typical in Municipal Solid Waste Incineration (MSWI). The experiments were carried out in a lab-scale fixed-bed device at temperatures between 120 and 200°C. Two samples of activated carbons (AC) (raw-AC and sulphur impregnated AC) were tested under the same conditions. The mineral-based sorbents were chemically promoted by sulphur, FeCl3 and CaBr2, achieving an improvement in the overall reduction percentage of Hg0out (g) up to 85%, which was comparable to that obtained using a commercial activated carbon for Hg capture (sulphur impregnated AC). The study demonstrates that sorbents with a matrix relatively richer in TiO2, Fe2O3 and Al2O3, as bentonite, favour Hg heterogeneous oxidation. The best Hg capture capacity was achieved with a zeolite sorbent sample characterized by high specific surface (132 m2/g) and impregnated with elemental sulphur. The final form of mercury retained in this sorbent was HgS with proved long-term stability in disposal and landfilling. The higher the temperature, the lower the efficiency of Hg capture being the optimum temperature for Hg-capture in the range of 120-150°C. This study provides a basis for the development of new efficient non-carbon sorbents for mercury removal in the air pollution control lines of MSWI facilities considering the non-hazardous final form of mercury and its long-term landfilling/sequestration
Gasification of biomass with CO2 and H2O mixtures in a catalytic fluidised bed
Steam can be fully or partially substituted by CO2 as a gasification agent. This substitution affects producer gas composition, char conversion and in-situ tar reforming. Here, wood chips were gasified in a spouting fluidised bed using silica sand and catalytic dolomitic lime as the bed material at 850 °C. The use of a gasifying agent composed of CO2 and H2O was compared to the use of CO2 or H2O alone. It was found that mixtures of CO2 and H2O as the gasifying agent improve char conversion, and that the combined gasification agents are very effective in ensuring the decomposition/destruction of tars when lime based materials are used in the fluidised bed
Flue gas purification with membranes based on the polymer of intrinsic microporosity PIM-TMN-Trip
Flue gas purification experiments were performed with a membrane made from the ultrapermeable polymer of intrinsic microporosity (PIM) based on tetramethyltetrahydronaphthalene unit coupled with bicyclic triptycene (PIM-TMN-Trip). Permeation experiments with a CO2-N2-O2-SO2 mixture, simulating flue gas from power plants, were performed by means of an in-house developed permeation unit. The results showed very high permeability of the membrane for sulfur dioxide SO2 and high permeability of CO2, lying mainly between the Robeson upper bound form 2008 and the recently reported upper bound from 2019. Moderately high mixed gas selectivity of SO2 and CO2 with respect to N2 (21-29 and 11-18, respectively), in combination with very high permeability (28∙103 and 30∙103 Barrer, respetively), suggest potential use for industrial gas separation processes. The SO2/CO2 mixed gas selectivity was relatively low (around 1.8), but comparable with other novel membranes, and both are removed simultaneously in the process of CO2 separation
Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review
Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance
Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process
Over the past few decades, bioenergy production from heavy metal-contaminated biomasses (HMCBs) has been drawing increasing attention from scientists in diverse disciplines and countries owing to their potential roles in addressing both energy crisis and environmental challenges. In this review, bioenergy recovery from HMCBs, i.e. contaminated plants and energy crops, using thermochemical processes (pyrolysis, gasification, combustion, and liquefaction) has been scrutinized. Furthermore, the necessity of the implementation of practical strategies towards sustainable phytoextraction and metal-free biofuels production has been critically discussed. To meet this aim, the paper firstly delivers the fundamental concepts regarding the remediation of the brownfields using phytoremediation approach, and then, reviews recent literature on sustainable phytoextraction of heavy metals from polluted soils. Thereafter, to find out the possibility of the cost-efficient production of metal-free biofuels from HMCBs using thermochemical methods, the impacts of various influential factors, such as the type of feedstock and metals contents, the reactor type and operating conditions, and the role of probable pre-/post-treatment on the fate of heavy metals and the quality of products, have also been discussed. Finally, based on relevant empirical results and techno-economic assessment (TEA) studies, the present paper sheds light on pyrolysis as the most promising thermochemical technique for large-scale electricity and heat recovery from HMCBs
Emisní faktory vybraných organických sloučenin ze spalování tvrdého dřeva v malých spalovacích zařízeních
Emission factors were determined during beech logs combustion in four domestic facilities
typical for Central European region households. In flue gases there were determined except basic
pollutants (NOx, CO, PM and OC as TOC ) also selected organic pollutants as PCBz, PCPh, PAH,
PCB, and PCDD/F. Generally, obtained EF values of selected pollutants were lower for modern
combustion facilities than for older ones. However, some differences were found between modern
facilities in dependence on their type as well. For better understanding results were also subjected to
principal component analysis.Emisní faktory (EF) byly stanoveny při spalování bukového dřeva ve čtyřech typech malých
spalovacích zařízeních typických pro domácnosti středoevropského regionu. Ve spalinách byly
sledovány základní znečišťující látky (NOx, CO, PM a VOC jako TOC) a také vybrané organické
znečišťující látky PCBz, PCPh, PAU, PCB a PCDD/F. Obecně lze konstatovat, že naměřené EF
vybraných znečišťujících látek byly nižší při použití moderních typů spalovacích zařízení než na
zařízeních starších konstrukcí. Nicméně, jsou také pozorovány rozdíly mezi jednotlivými moderními
zařízeními v závislosti na jejich typu. Pro lepší pochopení výsledků byla naměřená data rovněž
zpracovaná komponentní analýzou
Vliv nestabilních spalovacích procesů na emisní faktory vybraných znečišťujících látek a PCDD/F z malých zdrojů
- …
