11 research outputs found

    Effects of different soils on growth and development of Haplocladium micro phyllum(不同土壤栽培对细叶小羽藓(Haplocladium microphyllum)生长发育的影响)

    No full text
    苔藓植物的园艺园林应用日益受到重视,细叶小羽藓(Haplocladium micro phyllum)是一种交织生长、色泽翠绿、越冬能力强、观赏价值较高的林地野生苔藓资源.以黄泥土、黄砂土、白泥土为基质在光照培养箱内对细叶小羽藓进行栽培,利用盖度、分枝长度、分枝数、生物量、相对含水量及光合色素质量比等指标评价了细叶小羽藓生长发育状况,探讨了不同土壤类型对细叶小羽藓生长发育的影响.试验表明,黄泥土栽培细叶小羽藓生长效果最佳,栽培50 d其盖度可达84.33%,分枝长度为4.80 cm,一级及二级分枝数为11. 87和5. 13个,鲜重及干重分别增长38. 15和17. 69倍,黄砂土栽培细叶小羽藓生长效果次之,白泥土最差;不同土壤栽培细叶小羽藓光合色素质量比依次为黄泥土>黄砂土>白泥土,其中黄砂土栽培与野外生长光合色素质量比最相近;培养箱中用不同土壤栽培细叶小羽藓不改变其耐阴性

    Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024

    No full text
    We present a measurement of the integrated luminosity e+e- of collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm = 3.773 GeV. The integrated luminosities of the datasets taken from December 2021 to June 2022, from November 2022 to June 2023, and from October 2023 to February 2024 were determined to be 4.995±0.019 fb-1, 8.157±0.031 fb-1, and 4.191±0.016 fb-1, respectively, by analyzing large angle Bhabha scattering events. The uncertainties are dominated by systematic effects, and the statistical uncertainties are negligible. Our results provide essential input for future analyses and precision measurements

    Amplitude analysis of the decays D0π+ππ+πD^0\rightarrow\pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\rightarrow\pi^+\pi^-\pi^0\pi0

    No full text

    Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024*

    No full text

    Determination of the number of ψ(3686) events taken at BESIII

    No full text
    The number of ψ(3686) events collected by the BESIII detector during the 2021 run period is determined to be (2259.3±11.1)×106 by counting inclusive ψ(3686) hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of ψ(3686) events collected during the 2009 and 2012 run periods are updated to be (107.7±0.6)×106 and (345.4±2.6)×106, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of ψ(3686) events in the three data samples is (2712.4±14.3)×10^

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore