59 research outputs found

    线粒体质量控制在外源化学物引起坏死性凋亡中的作用

    Get PDF
    坏死性凋亡是一种可调控的、半胱氨酸天冬氨酸蛋白酶(Cysteine aspartic acid specific protease,Caspase)非依赖的程序性细胞死亡,相较于细胞凋亡,其主要特点是没有核固缩和气球样变,而出现的是线粒体肿胀和三磷酸腺苷(Adenosine triphosphate,ATP)耗竭、胞质肿胀和空泡形成,其最终引起质膜破裂和通透性改变,释放损伤相关分子,如白细胞介素1α、高国家自然科学基金(81573181,81472997);;福建省自然科学基金(2015J01344

    用热流探针测量激波速度

    Get PDF
    电离探针作为测量激波速度的一种基本手段,在激波速度较高的条件下应用效果很好,但是在激波速度较低、波后温度达不到空气电离程度的情况下,传统电离探针无法满足实验要求。同轴热电偶热流传感器频响很高,可以将其作为测速探针,但测速电子电路需重新设计。本文通过信号放大电路先锁定激波冲激信号,然后触发脉冲信号发生电路,实现了一种单通道、多测点的激波风洞测速系统。本测量技术可以广泛应用于各种激波风洞的激波速度测量,具有实际应用价值

    同轴热电偶的热响应特性分析及标定方法

    No full text
    同轴热电偶广泛用于气动热测量实验中,其优点是抗冲刷能力强,但测量精度不高。为提高热电偶的测量精度,本文对热电偶热响应特性进行了数值分析。分析结果表明,在短时间内结点结构对热电偶的热响应特性影响显著,但其影响随时间的增加逐渐减弱;绝缘层厚度对热电偶的响应时间起决定作用,厚度越小响应时间越快;绝缘层的热特性对热电偶的热响应影响很小。因此,热电偶的测量精度可通过增加实验时间和减小绝缘层厚度均得到有效提高。为对热电偶进行标定,本文采用了激波管加热模型驻点区的方法,该方法可实现对流加热,而且热流可准确预测,其实用性和准确性得到了实验的证实

    一种利用爆轰驱动技术的冲压发动机直连式试验装置

    No full text
    本发明公开了一种利用爆轰驱动技术的冲压发动机直连式试验装置,包括依次连接的泄爆段、驱动段、被驱动段、喷管、试验模型发动机和真空罐,所述泄爆段与驱动段之间通过第一膜片分开,驱动段与被驱动段之间通过第二膜片分开,被驱动段与喷管之间通过第三膜片分开;所述驱动段靠近被驱动段一端设有点火管,驱动段内通过加气装置加混合燃气;所述被驱动段内通过加气装置加试验气体空气;本发明将气相爆轰产生的高温、高压气体作为驱动气体对试验气体进行压缩,并采用直连式的结构,喷管出口与燃烧室入口直接相连,产生了临近空间飞行马赫数8以上地面试验所需的高温、高压空气来流

    一种电阻测温量热计的测量方法

    No full text
    本发明提供了一种电阻测温量热计及其测量方法,包括绝热管、固定在绝热管一端的量热片,以及填充在绝热管内的高分子化合物,其中,所述量热片朝向绝热管内部的一侧设置有金属薄膜,所述金属薄膜的两端分别连接有测量引线。上述量热计其通过将薄膜电阻即金属薄膜设置在量热片的背面,可避免热流对薄膜电阻的直接冲刷,可有效的提高薄膜电阻的阻值稳定性,且进一步的提高了测量精度和可靠性;金属薄膜为贵金属结构,因此使量热计具有更好的重复性和更高的灵敏度;且该量热计结构简单,安装和使用方便

    Numerical and experimental study on high-speed hydrogen-oxygen combustion gas flow and aerodynamic heating characteristics

    No full text
    The need to increase the payload capacity of the rockets motivates the development of high-power rocket engines. For a chemical propulsion system, this results in an increasing thermal load on the structure, especially the combustion chamber and nozzle must be able to withstand the extreme thermal load caused by high-temperature and high-pressure combustion gas. In order to protect the structure from the effect of increasing heat flux, it is necessary to counteract such effect with more advanced thermal management technology. This requires us to accurately predict the aerodynamic heating of the structure by high-temperature and high-speed combustion gas. In this study, a high-temperature combustion gas tunnel developed in the laboratory is used to produce high-speed combustion gas. Combined with the results of numerical calculation, the flow and aerodynamic heating characteristics of air and hydrogen-oxygen combustion gas under the same total temperature and pressure are analyzed and compared. The comparison revealed that the combustion gas flow in the nozzle has higher static temperature, velocity, and smaller Mach number. When the combustion gas flows around the sphere, the shock standoff distance and stagnation pressure are smaller than those of air, and the wall heat flux is much larger than that of air. The active chemical reaction in the combustion gas makes the aerodynamic heating of the structure more severe. Finally, through the analysis of a large amount of data, a semi-empirical formula for the heat flux of the stagnation point heated by a high-speed hydrogen and oxygen equivalent ratio combustion gas is obtained. Published under an exclusive license by AIP Publishing

    Experimental Research on the Detonation in Gaseous Mixtures with Suspended Aluminum Particles

    No full text
    The experiments have been performed in a horizontal detonation tube having a 13-m-long test section with 224 mm internal diameter. The suspended aluminum particles are spherical with a diameter range of 1–50 μm, using a particle concentration of 300 g/m3 approximately. It is found that the single-front and double-front detonation waves can propagate in a mixture of φ = 1.0 H2–air and aluminum particles which react with water vapor produced by gaseous detonation. The pressure records show that the detonation structure is double front when using 50 or 30 μm aluminum particles and that single front when using 20, 10, or 1 μm ones. However, these single-front detonation waves don’t have the same properties. The detonation velocity using 1 μm particles is increased by 3.3% from the value of the baseline gas detonation as the heat release between particles and gases starts before the sonic surface and supports the shock, while the 10 and 20 μm ones start behind the sonic surface, so the detonation velocities cannot be increased. The single-front structure displayed in pressure records using 10 and 20 μm particles is because of the delay of the second front which is too short to distinguish in the pressure records
    corecore