16 research outputs found
Pollution Characteristics and Ecological Risk of PBDEs in Water and Sediment from an Electronic Waste Dismantling Area in Taizhou
以台州某电子垃圾拆解工业园为圆心,在半径为16 km的范围内,由近及远设计了C(3 km)、S(5~10 km)和R(10~16km)三圈共30个采样点,研究了该区域水及沉积物中多溴联苯醚(PBDEs)的污染特征与生态风险.结果表明,水中PBDEs含量为9.4~57.2 ng·L~(-1),平均值为25.9 ng·L~(-1);沉积物中PBDEs含量为3.7~38 775 ng·g~(-1),平均值为2 779 ng·g~(-1);BDE-209均为主要成分.水及沉积物中PBDEs含量的空间分布态势均为:C圈>S圈>R圈,沉积物中PBDEs含量和离工业园区中心的距离呈极显著负相关(P S > R. Furthermore,the concentrations of PBDEs in sediments showed significant negative correlation against the distance from the industrial park( P < 0. 01). Compared with other regions around the world,the PBDEs contamination was more serious in the area,which indicated that e-waste dismantling activity was one of the significant sources for PBDEs pollution. It was estimated that a total of 30. 7 t PBDEs( including 28. 9 t BDE-209) was discharged into surrounding environment as a result of dismantling industrial activities in last 40 years. A preliminary ecological risk assessment for PBDEs in water and sediments was conducted by hazard quotient method. The results demonstrated that the Penta-BDEs in the center of e-waste dismantling area( a radius of 1. 5 km) was at particularly high risk level and could cause serious influence on the ecological safety and human health.环境保护公益性行业科研专项(201309047
一种水下腿履复合爬行底盘及应用其的水下机器人
本发明公开了一种水下腿履复合爬行底盘及应用其的水下机器人,涉及水下移动设备技术领域,解决了现有的水下机器人遇到障碍物时一般需要转向后绕开,由于其无法快速地跨过该障碍物,因此其缺乏在水中快速躲避障碍并保持快速行驶能力的问题,其技术方案要点是,包括:主架体、行驶机构、具有折叠状态和展开状态的折叠机构,其中折叠机构包括:第一转动装置、第一连杆、第二转动装置、第二连杆;第一连杆与第一转动装置传动连接;第二连杆与第二转动装置传动连接,第一连杆与第二连杆转动连接,本发明提供了一种新的水下快速移动的具体实施方式,其带可折叠式收纳功能、具有良好躲避障碍物能力、良好通过性、自由度高、结构简单、便于生产制造的优点
Influence of calcination temperature on the performance of Ni/La(Ⅲ) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols
Nanorod-shaped La( OH)3support was prepared by hydrothermal method,over which the supported Ni / La( III) catalysts were obtained through wet impregnation method; the influence of calcination temperature on the performance of Ni / La( III) catalyst in th
焙烧温度对Ni /La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响
采用水热法合成了纳米棒状La(OH)3载体,通过湿式浸渍方法制备了10%Ni/La(Ⅲ)负载型催化剂,考察了500~800℃不同焙烧温度对于催化剂氢解山梨醇制备低碳二元醇的影响,结合XRD、SEM/EDS、BET、H2-TPR-M S、CO/CO2-TPDM S、TG和ICP-AES等表征手段对Ni/La(Ⅲ)催化剂的构效关系进行了分析。结果表明,Ni/La(Ⅲ)催化剂表现出高的氢解反应活性,在较低的焙烧温度下(500℃)催化剂主要以Ni O/La2O2CO3结构形式存在。随着焙烧温度的升高,Ni O/La2O2CO3逐渐向La2Ni O4-La2O3进行转变。碱性是影响不同催化剂活性的决定因素,高的焙烧温度促进了催化剂中强碱性位的生成,显著提高了氢解反应活性,但对液体产物的选择性无明显影响,在220℃、4 MPa H2、1.5 h的条件下,山梨醇完全转化,低碳二元醇的产率可达到53%。低的焙烧温度则增加了催化剂的水热稳定性。催化剂的失活主要归结于活性金属粒子在水相反应中从载体表面脱落而发生团聚,降低氢解反应活性
