8 research outputs found

    FeSi2Ti相重构对工业硅中杂质酸洗行为的影响

    Get PDF
    为了强化酸洗提纯多晶硅技术,本工作通过FeSi2Ti相重构来提高酸洗的除杂能力。研究结果发现,经Si-Fe-Ti合金精炼之后,工业硅中的主要杂质相由原来的Si-Fe-Al、Si-Al-Fe和Si-Ti-Fe相转变成FeSi2Ti、Si-Ti-F...陕西省“无机高纯硅材料产业创新链”科技项目(2017TSCXL-GY-06-02)~

    Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging

    No full text
    With the rapid evolution of microelectronics and nanofabrication technologies, the feature sizes of large-scale integrated circuits continue to move toward the nanoscale. There is a strong need to improve the quality and efficiency of integrated circuit inspection, but it remains a great challenge to provide both rapid imaging and circuit node-level high-resolution images simultaneously using a conventional microscope. This paper proposes a nondestructive, high-throughput, multiscale correlation imaging method that combines atomic force microscopy (AFM) with microlens-based scanning optical microscopy. In this method, a microlens is coupled to the end of the AFM cantilever and the sample-facing side of the microlens contains a focused ion beam deposited tip which serves as the AFM scanning probe. The introduction of a microlens improves the imaging resolution of the AFM optical system, providing a 3&ndash;4&times; increase in optical imaging magnification while the scanning imaging throughput is improved &asymp;8&times;. The proposed method bridges the resolution gap between traditional optical imaging and AFM, achieves cross-scale rapid imaging with micrometer to nanometer resolution, and improves the efficiency of AFM-based large-scale imaging and detection. Simultaneously, nanoscale-level correlation between the acquired optical image and structure information is enabled by the method, providing a powerful tool for semiconductor device inspection.</p

    Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024*

    No full text

    Determination of the number of ψ(3686) events taken at BESIII

    No full text
    The number of ψ(3686) events collected by the BESIII detector during the 2021 run period is determined to be (2259.3±11.1)×106 by counting inclusive ψ(3686) hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of ψ(3686) events collected during the 2009 and 2012 run periods are updated to be (107.7±0.6)×106 and (345.4±2.6)×106, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of ψ(3686) events in the three data samples is (2712.4±14.3)×10^

    Amplitude analysis of the decays D0π+ππ+πD^0\rightarrow\pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\rightarrow\pi^+\pi^-\pi^0\pi0

    No full text

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore