9 research outputs found

    Study of a Fluid Drilling Machine for Plug-Tray Seedlings

    No full text
    摘 要 本研究目的在於完成流體播種機之研製,配合需浸種與催芽程序之種子育苗播種應用。本機設有特殊種子槽,供存放種子與水,利用吹氣產生浮力,震動種子造成單粒化,以真空吸附原理吸附種子後,再除去真空吸力及排入正壓空氣,達到播種目的。本研究以西瓜種子為對象進行機械性能測試之結果顯示,使用72格穴盤,17號種子吸附針,內吹壓力0.1MPa,水流浮力吹氣壓力0.2MPa,真空吸力25mmHg,其播種缺播率僅為1.97%,複粒率為1.04%.,單粒率達96.99%。經田間試驗調查出土率、生育及幼苗生長量等結果顯示,對可移植之30天苗齡種苗而言,使用流體播種機或人工播種Ⅰ,播種浸種與催芽處理之種子,在莖徑、株高、本葉數、植物體鮮重及乾物重方面,均比使用針式播種機或人工播種Ⅱ等處理,播種未經浸種與催芽過種子之方式為佳,並可提高生長速率,減少育苗日數約3~5天,節省育苗成本。本流體播種機由一人操作,其作業能量每小時可播種94個穴盤,比人工播種每小時33個穴盤快約2.85倍,可取代人工播種並節省勞力工時。ABSTRACT The objective of this study was to develop a fluid drilling machine for seeding operation that required seed soaking and pre-sprouting treatment. The machine was designed with a seed trough where seeds were immersed in water and agitated by compressed air jet. The buoyancy created by the agitation facilitated unitization of seeds and thus individual seeds can be seized by vacuum pressure. To achieve seeding operation, the seeds were then deployed by releasing vacuum pressure and then reversely supplying positive air pressure. Experiments were carried out to test the performance of the developed fluid drilling machine. Using no. 17 suction needles, 0.1 MPa blowing pressure, 0.2 MPa fluid agitation pressure, and 25 mmHg vacuum pressure, the missed seeding rate, multiple seeding rate were 1.97% and 1.04%, respectively. 96.99% of seeds were successfully seeded. Field tests also revealed that seeding by fluid drilling machine was superior to manual seeding or seeding without soaking and pre-sprouting treatment judging from seed emergence rate and seedling characteristics of stem diameter, plant height, leaf number, plant fresh weight and dry weight for 30-day watermelon seedlings. By applying the fluid drilling seeding operation, nursery period of seedlings can be 3~5 days less and therefore production cost can be reduced. The fluid drilling machine was operated by single person, and the seeding capacity was 94 trays per hour, which was 2.85 times faster than that of 33 trays per hour by manual seeding.目 錄 謝誌‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ I 摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧II ABSTRACT‧‧‧‧‧‧‧‧‧‧‧.‧‧‧‧‧‧‧‧‧‧‧III 目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ IV 表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅶ 圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧IX 第一章 前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 1-1 研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 1-2 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3 第二章 文獻探討‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 2-1 西瓜育苗與栽培‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧4 2-2 靜態真空吸附特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6 2-3 理論靜態吸附力學模式‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9 2-4 氣體動力吸附力學模式‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10 2-5 蔬菜育苗播種機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11 2-5-1蔬菜育苗一貫作業機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11 2-5-2台大桃改PN型播種機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13 2-6 種子預措處理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧18 2-7 流體播種機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20 第三章 機械設計研製‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24 3-1 機械研製‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24 3-2 作業程序控制系統‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26 第四章 試驗材料與方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1 試驗設備‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1-1種子吸附針‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1-2半導體真空計及壓力控制器‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1-3影像量測系統‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1-4精密電子天平‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36 4-1-5游標卡尺‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 4-1-6烘箱‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 4-2 試驗材料 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 4-3 試驗方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 4-3-1種子幾何形狀特性量測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37 4-3-2機械性能測定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧38 4-3-3田間試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧39 第五章 結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧41 5-1種子幾何形狀特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧41 5-2機械性能測定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧43 5-2-1不同吸力對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧43 5-2-2不同吸附針對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 5-2-3不同種子數量對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧46 5-2-4不同浮力對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧48 5-2-5西瓜種子不同胚根長度對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧49 5-2-6流體播種機試驗種子發芽率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧50 5-3田間試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧52 5-3-1流體播種機與針式播種機播種性能調查‧‧‧‧‧‧‧‧‧‧‧‧52 5-3-2流體播種機試驗出土率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53 5-3-3西瓜“華寶二號”不同苗齡及育苗法之幼苗生長比較‧‧‧‧‧‧55 5-3-3-1西瓜“華寶二號”不同苗齡及育苗法幼苗生長量之莖徑比較‧55 5-3-3-2西瓜“華寶二號”不同苗齡及育苗法幼苗生長量之株高比較‧56 5-3-3-3西瓜“華寶二號”不同苗齡及育苗法幼苗生長量之本葉數比較57 5-3-3-4西瓜“華寶二號”不同苗齡及育苗法幼苗生長量鮮重比較‧‧58 5-3-3-5西瓜“華寶二號”不同苗齡及育苗法幼苗生長量乾物重比較‧60 5-3-4作業工時與能量調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧64 第六章 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧67 6-1 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧67 6-2 建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧69 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70 表目錄 表2-1台灣地區十年來西瓜種植面積、產量與產值‧‧‧‧‧‧‧‧‧‧‧4 表2-2 蔬菜與花卉不規則種子之大小‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧15 表2-3 針式播種機對圓形種子之播種精度調查‧‧‧‧‧‧‧‧‧‧‧‧‧16 表2-4 針式播種機對不規則種子之播種精度調查‧‧‧‧‧‧‧‧‧‧‧‧16 表2-5 針式播種機對花卉種子之播種精度調查‧‧‧‧‧‧‧‧‧‧‧‧‧17 表2-6 針式播種機與人工播種工作效率比較‧‧‧‧‧‧‧‧‧‧‧‧‧‧17 表5-1 西瓜華寶二號種子樣本之幾何與物理特性量測統計值 ‧‧‧‧‧‧42 表5-2 不同吸力對播種精度之影響調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 表5-3 不同吸附針對播種精度之影響調查‧‧‧‧‧‧‧‧‧45 表5-4 不同種子槽之種子數量對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧47 表5-5 不同浮力對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧48 表5-6西瓜種子不同胚根長對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧50 表5-7西瓜“華寶二號”種子發芽率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧51 表5-8 流體播種機與針式播種機播種性能調查‧‧‧‧‧‧‧‧‧‧‧‧‧53 表5-9 不同育苗法播種試驗出土率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧54 表5-10西瓜不同苗齡及育苗法之幼苗生長量之莖徑比較‧‧‧‧‧‧‧‧55 表5-11 西瓜不同苗齡及育苗法幼苗生長量株高比較‧‧‧‧‧‧‧‧‧‧56 表5-12 西瓜不同苗齡及育苗法幼苗生長量之本葉數比較‧‧‧‧‧‧‧‧57 表5-13西瓜不同苗齡及育苗法幼苗生長量地上部鮮重比較‧‧‧58 表5-14西瓜不同苗齡及育苗法幼苗生長量地下部鮮重比較‧‧‧59 表5-15 西瓜不同苗齡及育苗法幼苗生長量地上部乾物重比較‧‧61 表5-16西瓜不同苗齡及育苗法幼苗生長量地下部乾物重比較‧‧62 表5-17流體播種機播種輸送皮帶輸送工時調查‧‧‧‧‧‧‧‧‧‧‧‧65 表5-18 人工播種Ⅰ(濕種子)工時調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧66 表5-19 人工播種Ⅱ(乾種子)工時調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧66 圖目錄 圖2-1 靜態種子吸針吸力分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9 圖3-1 流體播種機動作順序流程圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27 圖3-2 流體播種機結構圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28 圖3-3驅動機構示意圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29 圖3-4 流體播種機種子槽與水槽立體圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30 圖3-5種子槽之結構剖視圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧31 圖3-6種子槽實體圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧31 圖3-7 種子槽及水槽實體圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32 圖3-8種子針吸附種子情形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32 圖3-9 Y字風管接頭與排水系統之結構示意圖‧‧‧‧‧‧‧‧‧‧‧‧33 圖3-10 流體播種機實體‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧34 圖3-11 流體播種機作業情形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧34 圖3-12 流體播種機播種後情形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35 圖3-13 電控系統‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35 圖5-1 不同吸力對播種精度的影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 圖5-2 不同吸附針對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧45 圖5-3 不同種子數量對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧47 圖5-4 不同浮力對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧49 圖5-5 不同胚根長對播種精度之影響‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧50 圖5-6 西瓜“華寶二號”種子發芽率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧51 圖5-7 流體播種機與針式播種機播種性能比較‧‧‧‧‧‧‧‧‧‧‧‧‧53 圖5-8 不同育苗方法播種試驗出土率調查‧‧‧‧‧‧‧‧‧‧‧‧‧‧54 圖5-9 不同播種法之植物體鮮種‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧63 圖5-10 不同播種法之植物體乾物重‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6

    穴盤育苗流體播種機之研究

    No full text
    本研究目的在於完成流體播種機之研製,配合需浸種與催芽程序之種子育苗播種應用。本機設有特殊種子槽,供存放種子與水,利用吹氣產生浮力,震動種子造成單粒化,以真空吸附原理吸附種子後,再除去真空吸力及排入正壓空氣,達到播種目的。本研究以西瓜種子為對象進行機械性能測試之結果顯示,使用72格穴盤,17號種子吸附針,內吹壓力0.1MPa,水流浮力吹氣壓力0.2MPa,真空吸力25mmHg,其播種缺播率僅為1.97%,複粒率為1.04%.,單粒率達96.99%。經田間試驗調查出土率、生育及幼苗生長量等結果顯示,對可移植之The objective of this study was to develop a fluid drilling machine for seeding operation that required seed soaking and pre-sprouting treatment. The machine was designed with a seed trough where seeds were immersed in water and agitated by compressed ai

    EFFECTS OF EXTRACTS FROM DECOMPOSING PLANT RESIDUES ON KENAF SEED GERMINATION AND ON INFECTIONS OF RHIZOCTONIA SOLAN1 TO SOYBEAN AND KENAF

    No full text
    15種農作物殘體在土內腐化程度不同,其抽出液對鍾麻種子發芽之抑制毒害程度亦不相同。白菜、花椰菜、黃麻、大蒜、小麥、甘藷、棉和大豆等作物新鮮殘體抽出液對鐘麻種子發芽有顯著毒害。白菜、黃麻和鐘麻等農作物殘體在土內經7天腐化後之抽出液對鐘麻種子有毒害。經腐化14天之抽出液對鐘麻種子發芽有毒害者有鐘麻、蘿葡、白菜和落花生等。 大豆莖處理鐘麻、黃麻、大蒜、玉米、花生和蘿葡等農作物殘體(埋在土內7天)抽出液後有利Rhizoctonia solani之侵染,鐘麻莖處理鐘麻和白菜等作物殘體抽出液後有同樣效果。對大豆莖無毒害,且對R. solani之侵染無助之植物殘體有甘蔗,而對鐘麻莖者則有大蒜、王米、甘蔗和綿等。 Phytotoxic effects of extracts from decomposing plant residues of various crops were tested on kenaf seed germination and on infections of Rhizoctonia solani to stems of soybean and kenaf in vitro. It was found that the phytotoxic effects of extracts from plant residues were depending upon the kind of plant and the duration of decomposition concerned. Extracts from fresh plant residues of cabbage (Brassica pekinensis) , broccoli (Brassica oleracea), jute (Corchorus capsularis) , garlic (Allium scorodopraszsn), wheat (Triticum aestivum), sweet potato (Impomota bataras), cotton (Gossypium hirsutum) and soybean (Glycine max) were greatly harmful to kenaf seed germination. Extracts of kenaf (Hibiscus cannabinus) and cabbage residues after 7 days of decompositionwere highly toxic to kenaf seed, and those of kenaf, radish (Raphanus sativus), cabbage and peanut (Araclzis hvpogaea) residues after 14 days of decomposition also showed high toxic effect. Soybean stems treated with extracts of kenaf, jute, garlic, corn (Zea nays), peanut and radish residues, which had been buried in soil for 7 days, were greatly beneficial to the infection of R. solani. Kenaf stems treated with extracts of kenaf and cabbage residues showed the same effect. It was, however, also found that extract of sugarcane (Saccharurn of ficinarum) residue and those of garlic, corn, sugarcane and cotton residues showed neither phytotoxic effect nor predisposition to the infection of R. solani to soybean and kenaf, respectively

    Research and Development of Agricultural Machinery (II)

    No full text
    為因應當前農業環境之重大改變,適應世界貿易自由化、國際化之潮流,並突破當前之農業困境,擬衡酌未來土地利用型農作物之發展趨勢,研究開發本土型之農作物種苗、栽培、管理、病蟲害防治、收穫及收穫後處理等作業所需之機械,以促進農業生產全面機械化,藉以解決農村勞力不足問題,降低生產成本,確保農產品之品質.本年度本計畫將繼續水果內部品質檢測之研究,並對NIR非破壞性檢測之應用,柿子加工去皮去梗修蒂機之研製,加工用印度棗清洗、選別及劃切之一貫化及菱角剝殼機之研究進一步發展以取代人工作業模式,提高品質.研究改良桿式噴藥機、動力雙軌車,草花種苗假植機以提高作業效率.開發鳳梨園用施肥機、曳引機承載夾起式洋蔥收穫機、自走式白蘿蔔收穫機,耕耘刀表面特殊處理技術與曳引機旁載式堆肥攪拌翻堆機等機械與技術,提高生產與管理的效率,降低成本.研製蒸氣處理介質土壤病蟲害防治設備與果實蠅誘蟲器監控系統,減少病蟲害影響並減低農藥之用量.研製連續式紅外線茶葉烘培機,低濕調溫乾燥機與進行自然通風器應用於溫室環控之研究,以建立現有控制技術在農產品處理與環境上之應用系統.預期依計畫進度完成相關農產品檢測、農作物栽培、管理收穫與處理機械,以降低生產成本,提高產品品質,加速國內農業之轉型,促進農業升級.To adopt the change of agriculture environment as well as the world trade structure, it is a must to develop machines for local crops, seedlings, cultures, management, protecting system of disease and insect pest, harvesting, and post-harvesting process. Thus, mechanization in agricultural production would solve the problem of labor shortage as well as lower the cost of production, and resulted in ensuring the quality of agricultural products. There are several sub-projects proposed in this project to replace the manual operation and to improve the quality. They are listed in the followings: evaluation of internal quality of fruits, application of non-destructive NIR method, development of skin peeling machine and stem trimming for the diospyros kaki process, development of the integrated operating machine consists of cleaning, sorting and scar-cutting for Indian jujube, and study on the manufacture of peeling machine for water caltrops. In addition, there are three sub-projects proposed to improve the efficiencies of operations, such as performance improvement of boom sprayer, development of double-rail car for spraying on slope land, and design and development of a transplanter for ornamental flower seedlings. To improve the efficiencies of production and management thus results in cost reduction, five sub-projects are proposed: the study for fertilizer of pineapple yard, studies on the mounted type of onion harvester, the studies on a self-propelled radish harvester, surface hardening treatment for tillage blades, and development study of compost turner side mounted type from tractor. To reduce disease and insect pest as well as lower the usage of pesticide, there are two sub-projects proposed, such as development of the steam treatment machinery for medium and soil and design and development of a monitoring system for the oriental fruit fly trap. In addition, there are two sub-projects proposed to apply the commercially available control techniques on agricultural productprocesses and environmental system. They are the development of infrared tea roasting machine for continuous type and the study and application of the energy-free turbo ventilator used in the green house. Based on the schedule of this project, it would complete the evaluation of some agricultural products, transplanting, machines for managing, harvesting and processing, to lower the cost as well as improve the quality so that helps local agriculture upgrade and transform in a considerable speed

    Han and Xiongnu a Reexamination of Cultural and Political Relations (I)

    No full text
    corecore