3 research outputs found
The Singular Integral of an Analytic Polyhedron
本文利用r.HArVEy和J.POrkIng的方法首先定义广义式的CAuCHy主值,利用同伦公式,借助积分变换技巧研究WEIl型积分的边界性质,得到PlEMElJ公式.它有别于通常研究边界性质的方法.本文引入细复广义权和CHOQuET型复广义权的概念,讨论了某些与复广义权相关的函数的拟连续性与细拟处处连续的关系.Combining R.Harvey and J.Porking′s methods and traditional methods, we define the current Cauchy principal values in this paper by using homotopy formula and integral transformations.We study the boundary value of Weil type polyhedron integrals and obtain Plemelj formulas, which are different from the methods usually in the studies of boundary value problems
Stein流形上实非退化Wed多面体积分表示的边界性质
利用局部化技巧及李轮焕结果,研究了Stein流形上实非退化Weil多面体积分表示的边界性质,得到Coxo-Plemelj公式及其边界值的连续性
