59,762 research outputs found
On Statistical Query Sampling and NMR Quantum Computing
We introduce a ``Statistical Query Sampling'' model, in which the goal of an
algorithm is to produce an element in a hidden set with
reasonable probability. The algorithm gains information about through
oracle calls (statistical queries), where the algorithm submits a query
function and receives an approximation to . We
show how this model is related to NMR quantum computing, in which only
statistical properties of an ensemble of quantum systems can be measured, and
in particular to the question of whether one can translate standard quantum
algorithms to the NMR setting without putting all of their classical
post-processing into the quantum system. Using Fourier analysis techniques
developed in the related context of {em statistical query learning}, we prove a
number of lower bounds (both information-theoretic and cryptographic) on the
ability of algorithms to produces an , even when the set is fairly
simple. These lower bounds point out a difficulty in efficiently applying NMR
quantum computing to algorithms such as Shor's and Simon's algorithm that
involve significant classical post-processing. We also explicitly relate the
notion of statistical query sampling to that of statistical query learning.
An extended abstract appeared in the 18th Aunnual IEEE Conference of
Computational Complexity (CCC 2003), 2003.
Keywords: statistical query, NMR quantum computing, lower boundComment: 17 pages, no figures. Appeared in 18th Aunnual IEEE Conference of
Computational Complexity (CCC 2003
Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach
Short-term passenger demand forecasting is of great importance to the
on-demand ride service platform, which can incentivize vacant cars moving from
over-supply regions to over-demand regions. The spatial dependences, temporal
dependences, and exogenous dependences need to be considered simultaneously,
however, which makes short-term passenger demand forecasting challenging. We
propose a novel deep learning (DL) approach, named the fusion convolutional
long short-term memory network (FCL-Net), to address these three dependences
within one end-to-end learning architecture. The model is stacked and fused by
multiple convolutional long short-term memory (LSTM) layers, standard LSTM
layers, and convolutional layers. The fusion of convolutional techniques and
the LSTM network enables the proposed DL approach to better capture the
spatio-temporal characteristics and correlations of explanatory variables. A
tailored spatially aggregated random forest is employed to rank the importance
of the explanatory variables. The ranking is then used for feature selection.
The proposed DL approach is applied to the short-term forecasting of passenger
demand under an on-demand ride service platform in Hangzhou, China.
Experimental results, validated on real-world data provided by DiDi Chuxing,
show that the FCL-Net achieves better predictive performance than traditional
approaches including both classical time-series prediction models and neural
network based algorithms (e.g., artificial neural network and LSTM). This paper
is one of the first DL studies to forecast the short-term passenger demand of
an on-demand ride service platform by examining the spatio-temporal
correlations.Comment: 39 pages, 10 figure
Tensor stability in Born-Infeld determinantal gravity
We consider the transverse-traceless tensor perturbation of a spatial flat
homogeneous and isotropic spacetime in Born-Infeld determinantal gravity, and
investigate the evolution of the tensor mode for two solutions in the early
universe. For the first solution where the initial singularity is replaced by a
regular geometric de Sitter inflation of infinite duration, the evolution of
the tensor mode is stable for the parameter spaces ,
and , . For the second solution where the
initial singularity is replaced by a primordial brusque bounce, which suffers a
sudden singularity at the bouncing point, the evolution of the tensor mode is
stable for all regions of the parameter space. Our calculation suggests that
the tensor evolution can hold stability in large parameter spaces, which is a
remarkable property of Born-Infeld determinantal gravity. We also constrain the
theoretical parameter by resorting to
the current bound on the speed of the gravitational waves.Comment: 14 pages, added a general discussion on the tensor stability in Sec.
3, and added Sec. 5 on the parameter constraint, published versio
- …
