40 research outputs found
Establishment of A Dynamic Analysis System for Rainfall-Runoff Simulation Model of Ba-zhang Creek Watershed
Automated Watershed Delineation for Spatial Information Extraction and Slopeland Yield Evalution
水土保持之理論基礎及實務應用多以集水區為評估單元,往昔集水區資訊之萃取主要以人工方式量測,近年來隨電腦科技之進步,數值高程模型資料於集水區自動劃分及水系網萃取的技術已臻成熟,利用電腦量化集水區資訊應用於坡地災害分析為時勢所趨。有鑑於此,本研究以集水區自動劃分理論為主軸,針對窪地出口、流向迴路、集水區門檻值劃分及水系網萃取等項目,提出窪地集水區、動態集水區劃分及多重門檻值水系網萃取等改進方法;以石門、德基及曾文水庫集水區為驗證樣區,自動萃取集水區範圍及水系網分布,結合空間分析以自動萃取集水區之地文與水文資訊。另由集水區自動劃分理論,結合通用土壤流失公式(USLE)及泥砂遞移率(SDR)之計算,撰寫專家系統介面,建立集水區坡面泥砂產量推估模式,由石門、德基、曾文水庫及二仁溪上游集水區為驗證區域,推估集水區土壤沖蝕量及坡面泥砂產量之空間分布,其結果分述如下:
藉由高差法(Jenson and Domingue, 1988)及本研究所推導之斜面法能計算集水區之初始流向,輔以窪地集水區法結合PROMETHEE理論計算建立集水區之無窪地流向。石門、德基及曾文水庫集水區之流向計算,與傳統方法(高程平滑化法、窪地填高法及逐步填高法)比較,以窪地集水區法最為精確。本研究所研發之集水區動態萃取方法,使用者僅需指定出流口,電腦即可自動追跡流經該點之所有排水區位,獲得集水區範圍;以石門、德基及曾文水庫集水區之水庫大壩為出流口,動態萃取之集水區面積為75634 ha、52367 ha及48395 ha。而真實水系網之萃取,由於集水區之地形、地質、土壤及氣候為非均一性,單一門檻值所萃取水系網無法代表真實水系網,本研究以多重門檻值取代傳統單一門檻值,其結果可確實反應水系網分布現況。
集水區坡面泥砂產量之推估結果,石門、德基、曾文水庫及二仁溪上游集水區之年泥砂產量分別為1928168 tons/yr、1793742 tons/yr、4807205 tons/yr及5074396 tons/yr,年平均沖蝕深度分別為1.82mm、2.45mm、7.10mm及25.81mm,以有泥岩分布之曾文水庫及二仁溪上游集水區較為嚴重。集水區坡面泥砂產量推估以Nash and Sutcliffe (1970)公式所計算之模式效率( )為81.21%,另由集水區泥砂產量推估值( )與實測值( )相關分析結果,呈顯著正相關, 。由集水區泥砂遞移率特性分析,顯示 之地區屬高遞移率區位,石門、德基及曾文水庫集水區內高遞移率區位之面積雖佔集水區之10.58%、9.21%及10.01%,其泥砂產量百分比可高達集水區之46.99%、49.20%及46.47%,為集水區泥砂來源之敏感區位。Watershed unit has been regarded as an analyzed object for slopeland disaster assessment. With the fast growing progress of computer technologies, instead of manual operation, there is a trend of applying Digital Elevation Model (DEM) in automated watershed delineating and drainage network design. This study first focused on improving extraction method for automated watershed delineating. The concepts for depression outlets decision, looped drainage direction calculation, reasonable watersheds area delineation, and simulation of realistic drainage networks are all revised to propose a new approach for more reasonable and efficient in watershed delineation. Three major reservoir watersheds (Shihmen, Techi and Tsenwen) were chosen to calculate watershed geomorphologic and hydrologic information for verifying the suitability of proposed approach. An expert system was also developed using the approach included Universal Soil Loss Equation (USLE) and Sediment Delivery Ratio (SDR) to estimate watershed sediment yield. The system shows good performance for Shihmen, Techi, Tsenwen reservoir and Erzen creek watersheds. The results are summarized as follows:
Using DEM to derive drainage directions of a watershed is frequently used in recent study. However, determinations of the optimal outlet and drainage directions for the depressions should be improved for fitting the real field data. This study proposed surface-inclining approach to couple with elevation-differencing approach (Jenson and Domingue, 1988) for determining incipient drainage directions. The calculation of optimal outlet and drainage direction in the depressions can be performed using watershed depression approach with PROMETHEE theory. Compared with elevation-smoothing, depression-filling and repeatedly elevation-incrementing approaches, the drainage directions for Shihmen, Techi and Twensen reservoir watersheds calculated by watershed depression approach show more reasonable and realistic outcomes. A dynamic extraction technique for tracing upstream drainage area based on user-specified outlet is also developed for fast automatically watershed delineating. The watershed area extracted for Shihmen, Techi and Twensen reservoir with the outlet located at the site of dam is 75634 ha, 52367 ha and 48396 ha, respectively. Due to inhomogeneous characteristics of geomorphology, geology, soil and/or climates of a watershed, the real drainage networks can not be delineated properly using single-threshold approach. Instead, a multiple-threshold approach is developed to cope with the real spatial distribution of streams in a watershed.
Annual watershed sediment yield calculated for Shihmen, Techi, Twensen reservoirs and Erzen creek is 1928168 tons/yr, 1793742 tons/yr, 4807205 tons/yr and 5074396 tons/yr, and the corresponding annual erosion depth is 1.82mm, 2.45mm, 7.10mm and 25.81mm, respectively. Tsenwen reservoir and Erzen creek show higher erosion depth because of moderate mudstone distribution in the watershed. Model efficiency by Nash and Sutcliffe (1970) for sediment yield estimation is 81.21%, the model ( , ) shows significant correlation between estimated ( ) and measured ( ) data. The sites with can be clustered as higher sediment delivery sites from characteristic curve analysis. Area percentage of higher sediment delivery sites occupied for Shihmen, Techi and Tsenwen reservoir watersheds are only 10.58%, 9.21% and 10.01%. While the sediment yield percentage for the respective watershed can reach to 46.99%, 49.20% and 46.47%. It shows that higher sediment delivery sites are the main source of soil erosion.章節目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
章節目錄 Ⅴ
圖次目錄 Ⅶ
表次目錄 XI
符號說明 XⅢ
第一章 緒論 1
第一節 前言 1
第二節 研究動機及背景 3
第三節 論文架構及研究流程 4
第二章 前人研究 6
第一節 集水區自動劃分理論 6
壹、數值地形模型之定義、源起及應用 6
貳、集水區之定義與導論 10
參、集水區自動劃分理論之回顧 11
第二節 集水區坡面泥砂產量推估模式 17
壹、集水區泥砂產量推估之回顧 17
貳、土壤沖蝕模式及泥砂遞移率 21
參、專家系統之發展與應用 26
第三章 研究材料與方法 29
第一節 環境概述 29
第二節 集水區自動劃分理論之建立 41
壹、集水區自動劃分理論 41
貳、集水區地文水文資訊分析 66
第三節 集水區坡面泥砂量推估模式之建立 70
壹、集水區泥砂產量推估模式 70
貳、集水區泥砂量推估專家系統之建立 77
第四節 研究材料與方法之限制 81
第四章 結果與討論 82
第一節 集水區自動劃分理論之分析與應用 82
壹、DEM窪地及平坦地形特性之探討 82
貳、無窪地流向之計算 85
參、集水區劃分合理性之探討 102
肆、水系網萃取之探討 111
伍、集水區地文水文資訊分析之探討 119
第二節 集水區泥砂災害敏感區位之評估 125
壹、土壤沖蝕因子及泥砂遞移率量化分析 125
貳、集水區泥砂量推估專家系統之實例應用 137
參、集水區土壤沖蝕量及坡面泥砂產量之探討 142
肆、集水區泥砂遞移特性分析 154
第五章 結論 160
參考文獻 162
圖次目錄
圖1-1 研究流程 5
圖2-1 DTM資料產生及應用(Maguire et al., 1991) 7
圖2-2 典型專家系統架構 26
圖3-1 研究地區 29
圖3-2 平滑化加權矩陣 42
圖3-3 窪地填高處理示意圖 42
圖3-4 平坦地區之高程逐步填高及排水流向指定示意圖 43
圖3-5 網格流向的定義 44
圖3-6 集水區自動劃分之流程 47
圖3-7 3×3視窗網格示意圖 49
圖3-8 3×3網格之出口網格示意圖 51
圖3-9 窪地集水區示意圖 52
圖3-10 水系起始點誤差長度示意圖 64
圖3-11 多重門檻值建立水系網之流程圖 65
圖3-12 集水區泥砂量推估示意圖(Young et al., 1994) 71
圖3-13 年平均降雨沖蝕指數圖(黃俊德,1979) 72
圖3-14 土壤沖蝕指數圖 73
圖3-15 集水區坡面泥砂遞移率示意圖 76
圖3-16 集水區泥砂量推估專家系統之決策樹 78
圖3-17 專家系統介面 80
圖4-1 平坦地形之形狀 82
圖4-2 集水區之窪地及平坦地形示意圖 84
圖4-3 DEM之原始高程資料 85
圖4-4 窪地填高法之第一次填高處理 87
圖4-5 窪地填高法之第二次填高處理 87
圖4-6 窪地填高法之排水流向 88
圖4-7 平滑化法之第一次平滑處理 88
圖4-8 平滑化法之第二次平滑處理 89
圖4-9 平滑化法之流向計算 89
圖4-10 建立窪地鄰近網格之高程差值 91
圖4-11 窪地逐步填高示意圖 91
圖4-12 逐步填高法之流向計算 92
圖4-13 有窪地流向之計算 93
圖4-14 窪地集水區示意圖 94
圖4-15 窪地集水區邊界網格編號 95
圖4-16 窪地出口計算之示意圖 97
圖4-17 無窪地流向計算示意圖 100
圖4-18 高程平滑化之收斂曲線 103
圖4-19 不同窪地處理方法之集水區劃分差異比較(石門水庫集水區) 105
圖4-20 不同窪地處理方法之集水區劃分差異比較(曾文水庫集水區) 106
圖4-21 不同門檻值之集水區劃分結果 107
圖4-22 不符定義之集水區(門檻值為1000) 109
圖4-23 集水區動態劃分示意圖 110
圖4-24 集水區水系門檻值頻度分佈圖 111
圖4-25 最小誤差法求水系門檻值 114
圖4-26 不同門檻值之水系網萃取結果 115
圖4-27a 真實水系與單一門檻值水系之差異(石門水庫集水區) 116
圖4-27b 真實水系與單一門檻值水系之差異(德基水庫集水區) 117
圖4-27c 真實水系與單一門檻值水系之差異(曾文水庫集水區) 117
圖4-28 石門、德基及曾文水庫集水區之高程面積曲線 121
圖4-29 集水區Rm值之空間分布 125
圖4-30 集水區Rm值之頻度分布 126
圖4-31 集水區Km值之空間分布 127
圖4-32 集水區Km值之頻度分布 127
圖4-33 集水區漫地流與渠道流之配置情形 129
圖4-34 集水區坡度因子之累積曲線圖 130
圖4-35 NDVI與C值線性反向配置 131
圖4-36 不同地覆之C值分布範圍 132
圖4-37 不同地覆之修正C值分布範圍 133
圖4-38 集水區之C值分布圖 134
圖4-39 集水區坡面泥砂遞移率之頻度分布 135
圖4-40 集水區坡面泥砂遞移率分佈圖 136
圖4-41 開發前後集水區之地形示意圖 137
圖4-42 地形分析模組之應用 139
圖4-43 集水區自動劃分模組之應用 139
圖4-44 土壤沖蝕計算模組之應用 140
圖4-45 泥砂產量推估模組之應用 140
圖4-46 集水區之土壤沖蝕量累積曲線 143
圖4-47a 石門水庫集水區土壤流失量分佈圖 145
圖4-47b 德基水庫集水區土壤流失量分佈圖 145
圖4-47c 曾文水庫集水區土壤流失量分佈圖 146
圖4-47d 二仁溪上游集水區土壤流失量分佈圖 146
圖4-48a 石門水庫集水區坡面泥砂產量分布圖 148
圖4-48b 德基水庫集水區坡面泥砂產量分布圖 148
圖4-48c 曾文水庫集水區坡面泥砂產量分布圖 149
圖4-48d 二仁溪上游集水區坡面泥砂產量分布圖 149
圖4-49 實測與推估沖蝕深度之迴歸分析 153
圖4-50a 石門水庫集水區重要溪流示意圖 154
圖4-50b 德基水庫集水區重要溪流示意圖 155
圖4-50c 曾文水庫集水區重要溪流示意圖 155
圖4-51 SDR特性曲線 157
表次目錄
表2-1 集水區自動劃分理論之比較 16
表2-2 模式(方法)功能比較表 18
表3-1 石門水庫集水區之氣象資料表 32
表3-2 石門水庫集水區之氣候分類表 32
表3-3 德基水庫集水區氣候資料 35
表3-4 德基水庫集水區之氣候分類表 35
表3-5 曾文水庫集水區氣候資料 37
表3-6 曾文水庫集水區之氣候分類表 37
表3-7 二仁溪上游集水區氣候資料 39
表3-8 二仁溪上游集水區之氣候分類表 40
表3-9 評準-方案評估表 54
表3-10 偏好函數形態 55
表3-11 集水區之地文水文因子分析項目 67
表4-1 集水區之窪地資料統計表 83
表4-2a 窪地出口候選網格之整體偏好函數流量(A區) 98
表4-2b 窪地出口候選網格之整體偏好函數流量(C區) 99
表4-3 四種窪地處理方法之差異比較 101
表4-4 不同門檻值劃分集水區之統計表 108
表4-5 試誤法界定水系門檻值 112
表4-6 水系門檻值之群集累積頻度表 113
表4-7 集水區之地文因子資訊 119
表4-8 集水區之水文因子資訊 120
表4-9 集水區不同地表覆蓋之參考C值 133
表4-10 集水區之土壤沖蝕量統計表 143
表4-11a 石門水庫集水區泥砂來源分析 156
表4-11b 德基水庫集水區泥砂來源分析 156
表4-11c 曾文水庫集水區泥砂來源分析 15
國際貨幣基金成立過程之研究
本文之撰作旨在探討國際貨幣基金成立當時之背景,以及關於建立新國祭貨幣制度主要計劃之懷特方案與凱因斯方案二者之內容,並對國際貨幣基金成立之後之營運情形作一檢討。全文共分五章。節一章為明戊一次世界大戰後之國際貨幣局勢,以及戰後金本任制度之恢復及其崩潰之情形,並對當時英、美、法、三國成立之「三國貨幣協定」作一檢討。第三章說明國際貨幣新秩序之建立,首先討論國際貨幣新秩序建立的困難,並檢討懷特、凱因斯二方案之內容,以及明布列救森林會議之決定與國際貨幣基金之成立。第四章說明國際貨幣基金之任務與組織,並探討國際貨幣基金成立以迄特別提款權產生期間維持困難之情形。第五章結論,業於本文之入容作一概括之陳述,並就著者作之心得作一總結。#281065
The Study of Benefit Evaluation on the Interception and Storage Facilities for Surface Runoff Located in the Ecological Farm Area (III)
農村規劃時,常因使用的便利性而採用不透水舖面施作,造成大地良好的滲透與保水能力降低,也造成動植物的棲地環境惡化,除無法發揮大地自然調節氣候的功能,甚至引發居住環境日漸高溫化的「熱島效應」。而且過去的防洪觀念,大都希望把基地內的雨水,儘速往鄰地排出或引流至排水系統,造成集流時間縮短及洪峰流量增大的洪水效應,同時也造成公共排水設施極大的負擔,形成低窪地區每到大雨即淹水的窘境。因此本計畫希望藉由促進基地的透水設計並廣設貯留滲透水池或滯洪池的手法,以促進大地之水文循環、改善生態環境、調節微氣候、緩和環境高溫化現象,以及降低排水設施建造成本等多項目地。目前常用地表逕流之截蓄保水設施主要為滯洪池、農塘或溼地及透水舖面等截水設施,其目的便在降低洪峰流量、遲滯洪峰到達時間,以及提供水域空間進而促進生物多樣性等效益。本計畫以水土保持技術規範、綠建築設計技術、基地保水設施功能及其他相關理論,研發生態農村保水設施配置效益分析系統,分析生態農村基地內各項地表逕流截蓄保水設施之配置效益,提供基地保水指標之量化計算,做為農村土地管理對策研擬及農村公共建設規劃之依據,並作為公共建設成效評估及理念推廣之參考。本計畫亦希望透過生態農村保水設施配置效益分析系統之建置與現地調查分析驗證,提供坡地保育治理對策研擬之依據,以及治理成效之評估。本計畫完成之工作項目為:研發成果可提供相關人員應用之參考、建置地表逕流之截蓄保水設施整體效益評估系統、推廣應用地表逕流之截蓄保水設施於生態農村規劃、建立地表逕流之截蓄保水設施之農村濕地生態系統理論與實務。The impermeable surface treatments are normally used in farm area planning for human convenient reason. However, the soil infiltration capacity, water resources conservation capability, and wildlife habitat are deteriorated. The weather improvement by the nature effects can not be reached. Even the worst, the hot island effect will increase the living environment temperature. Based on the traditional concepts on flood prevention, the precipitation is usually draining to neighboring area or drainage system. This method causes a big challenge to public drainage system for shorter concentration time and higher peak discharge. Normally, the depression area will be suffered in storm events during this condition. This project hopes to improve hydrologic cycle, wildlife habitat, micro-environment weather, drainage system cost, and greenhouse effect through site infiltration improvement and permeable facilities or wetland system establishment. Currently, the most used interception and storage facilities for surface runoff are detention tanks, agriculture ponds, wetlands, and permeable pavement. The purposes are focused on peak discharge reduction, peak arrival time retention, and providing aquatic spaces for biodiversity. This project are based on the soil and water conservation regulations, eco-building designing techniques, water storage facility functions, and other related theories. A benefit evaluation system is developed in this study to analyze the total placement effect and each facility unique value. Through the developed computer program, the site water resources conservation index can be quantified. The calculated results can be provided to farm area planning authorities and construction evaluation. This study also can be the support to slopeland conservation policy-making basis by the benefit evaluation system and on-field investigation. The conclusive targets of this study are providing the developed achievements to related staff, establishing the evaluation system on interception and storage facilities for surface runoff located in ecological farm area, promoting the interception and storage facilities for surface runoff in ecological farm area planning, and establishing the wetland theories and practices on the ecological farm area using interception and storage facilities
The Study of Benefit Evaluation on the Interception and Storage Facilities for Surface Runoff Located in the Ecological Farm Area (II)
農村規劃時,常因使用的便利性而採用不透水舖面施作,造成大地良好的滲透與保水能力降低,也造成動植物的棲地環境惡化,除無法發揮大地自然調節氣候的功能,甚至引發居住環境日漸高溫化的「熱島效應」。而且過去的防洪觀念,大都希望把基地內的雨水,儘速往鄰地排出或引流至排水系統,造成集流時間縮短及洪峰流量增大的洪水效應,同時也造成公共排水設施極大的負擔,形成低窪地區每到大雨即淹水的窘境。因此本計畫希望藉由促進基地的透水設計並廣設貯留滲透水池或滯洪池的手法,以促進大地之水文循環、改善生態環境、調節微氣候、緩和環境高溫化現象,以及降低排水設施建造成本等多項目地。目前常用地表逕流之截蓄保水設施主要為滯洪池、農塘或溼地及透水舖面等截水設施,其目的便在降低洪峰流量、遲滯洪峰到達時間,以及提供水域空間進而促進生物多樣性等效益。本計畫以水土保持技術規範、綠建築設計技術、基地保水設施功能及其他相關理論,研發生態農村保水設施配置效益分析系統,分析生態農村基地內各項地表逕流截蓄保水設施之配置效益,提供基地保水指標之量化計算,做為農村土地管理對策研擬及農村公共建設規劃之依據,並作為公共建設成效評估及理念推廣之參考。本計畫亦希望透過生態農村保水設施配置效益分析系統之建置與現地調查分析驗證,提供坡地保育治理對策研擬之依據,以及治理成效之評估。本計畫完成之工作項目為:研發成果可提供相關人員應用之參考、建置地表逕流之截蓄保水設施整體效益評估系統、推廣應用地表逕流之截蓄保水設施於生態農村規劃、建立地表逕流之截蓄保水設施之農村濕地生態系統理論與實務。The impermeable surface treatments are normally used in farm area planning for human convenient reason. However, the soil infiltration capacity, water resources conservation capability, and wildlife habitat are deteriorated. The weather improvement by the nature effects can not be reached. Even the worst, the hot island effect will increase the living environment temperature. Based on the traditional concepts on flood prevention, the precipitation is usually draining to neighboring area or drainage system. This method causes a big challenge to public drainage system for shorter concentration time and higher peak discharge. Normally, the depression area will be suffered in storm events during this condition. This project hopes to improve hydrologic cycle, wildlife habitat, micro-environment weather, drainage system cost, and greenhouse effect through site infiltration improvement and permeable facilities or wetland system establishment. Currently, the most used interception and storage facilities for surface runoff are detention tanks, agriculture ponds, wetlands, and permeable pavement. The purposes are focused on peak discharge reduction, peak arrival time retention, and providing aquatic spaces for biodiversity. This project are based on the soil and water conservation regulations, eco-building designing techniques, water storage facility functions, and other related theories. A benefit evaluation system is developed in this study to analyze the total placement effect and each facility unique value. Through the developed computer program, the site water resources conservation index can be quantified. The calculated results can be provided to farm area planning authorities and construction evaluation. This study also can be the support to slopeland conservation policy-making basis by the benefit evaluation system and on-field investigation. The conclusive targets of this study are providing the developed achievements to related staff, establishing the evaluation system on interception and storage facilities for surface runoff located in ecological farm area, promoting the interception and storage facilities for surface runoff in ecological farm area planning, and establishing the wetland theories and practices on the ecological farm area using interception and storage facilities
The Study of Benefit Evaluation on the Interception and Storage Facilities for Surface Runoff Located in the Ecological Farm Area
農村規劃時,常因使用的便利性而採用不透水舖面施作,造成大地良好的滲透與保水能力降低,也造成動植物的棲地環境惡化,除無法發揮大地自然調節氣候的功能,甚至引發居住環境日漸高溫化的「熱島效應」。而且過去的防洪觀念,大都希望把基地內的雨水,儘速往鄰地排出或引流至排水系統,造成集流時間縮短及洪峰流量增大的洪水效應,同時也造成公共排水設施極大的負擔,形成低窪地區每到大雨即淹水的窘境。因此本計畫希望藉由促進基地的透水設計並廣設貯留滲透水池或滯洪池的手法,以促進大地之水文循環、改善生態環境、調節微氣候、緩和環境高溫化現象,以及降低排水設施建造成本等多項目地。目前常用地表逕流之截蓄保水設施主要為滯洪池、農塘或溼地及透水舖面等截水設施,其目的便在降低洪峰流量、遲滯洪峰到達時間,以及提供水域空間進而促進生物多樣性等效益。本計畫以水土保持技術規範、綠建築設計技術、基地保水設施功能及其他相關理論,研發生態農村保水設施配置效益分析系統,分析生態農村基地內各項地表逕流截蓄保水設施之配置效益,提供基地保水指標之量化計算,做為農村土地管理對策研擬及農村公共建設規劃之依據,並作為公共建設成效評估及理念推廣之參考。本計畫亦希望透過生態農村保水設施配置效益分析系統之建置與現地調查分析驗證,提供坡地保育治理對策研擬之依據,以及治理成效之評估。本計畫完成之工作項目為:研發成果可提供相關人員應用之參考、建置地表逕流之截蓄保水設施整體效益評估系統、推廣應用地表逕流之截蓄保水設施於生態農村規劃、建立地表逕流之截蓄保水設施之農村濕地生態系統理論與實務。The impermeable surface treatments are normally used in farm area planning for human convenient reason. However, the soil infiltration capacity, water resources conservation capability, and wildlife habitat are deteriorated. The weather improvement by the nature effects can not be reached. Even the worst, the hot island effect will increase the living environment temperature. Based on the traditional concepts on flood prevention, the precipitation is usually draining to neighboring area or drainage system. This method causes a big challenge to public drainage system for shorter concentration time and higher peak discharge. Normally, the depression area will be suffered in storm events during this condition. This project hopes to improve hydrologic cycle, wildlife habitat, micro-environment weather, drainage system cost, and greenhouse effect through site infiltration improvement and permeable facilities or wetland system establishment. Currently, the most used interception and storage facilities for surface runoff are detention tanks, agriculture ponds, wetlands, and permeable pavement. The purposes are focused on peak discharge reduction, peak arrival time retention, and providing aquatic spaces for biodiversity. This project are based on the soil and water conservation regulations, eco-building designing techniques, water storage facility functions, and other related theories. A benefit evaluation system is developed in this study to analyze the total placement effect and each facility unique value. Through the developed computer program, the site water resources conservation index can be quantified. The calculated results can be provided to farm area planning authorities and construction evaluation. This study also can be the support to slopeland conservation policy-making basis by the benefit evaluation system and on-field investigation. The conclusive targets of this study are providing the developed achievements to related staff, establishing the evaluation system on interception and storage facilities for surface runoff located in ecological farm area, promoting the interception and storage facilities for surface runoff in ecological farm area planning, and establishing the wetland theories and practices on the ecological farm area using interception and storage facilities
