52 research outputs found
Coexpression of Spectrally Distinct Rhodopsins in Aedes aegypti R7 Photoreceptors
The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal region, Aaop9 is expressed in both the cell body and rhabdomere of R7 and R8 cells. In other retinal regions Aaop9 is expressed only in R7 cells, being localized to the R7 rhabdomere in the central and ventral regions and in both the cell body and rhabdomere within the ventral stripe. Within the dorsal-central transition area ommatidia do not show a strict pairing of R7–R8 cell types. Thus, Aaop9 is coexpressed in the two classes of R7 photoreceptors previously distinguished by the non-overlapping expression of Aaop8 and Aaop2 rhodopsins. Electroretinogram analysis of transgenic Drosophila shows that Aaop9 is a short wavelength rhodopsin with an optimal response to 400–450 nm light. The coexpressed Aaop2 rhodopsin has dual wavelength sensitivity of 500–550 nm and near 350 nm in the UV region. As predicted by the spectral properties of each rhodopsin, Drosophila photoreceptors expressing both Aaop9 and Aaop2 rhodopsins exhibit a uniform sensitivity across the broad 350–550 nm light range. We propose that rhodopsin coexpression is an adaptation within the R7 cells to improve visual function in the low-light environments in which Ae. aegypti is active
Cloning and characterization of NYD-OP7, a novel deltamethrin resistance associated gene from Culex pipiens pallens
Revision spine surgery in patients without clinical signs of infection: How often are there occult infections in removed hardware?
What Is the Learning Curve for Robotic-assisted Pedicle Screw Placement in Spine Surgery?
BACKGROUND: Some early studies with robotic-assisted pedicle screw implantation have suggested these systems increase accuracy of screw placement. However, the relationship between the success rate of screw placement and the learning curve of this new technique has not been evaluated. QUESTIONS/PURPOSES: We determined whether, as a function of surgeon experience, (1) the success rate of robotic-assisted pedicle screw placement improved, (2) the frequency of conversion from robotic to manual screw placement decreased, and (3) the frequency of malpositioned screws decreased. METHODS: Between June 2010 and August 2012, the senior surgeon (IHL) performed 174 posterior spinal procedures using pedicle screws, 162 of which were attempted with robotic assistance. The use of the robotic system was aborted in 12 of the 162 procedures due to technical issues (registration failure, software crash, etc). The robotic system was successfully used in the remaining 150 procedures. These were the first procedures performed with the robot by the senior surgeon, and in this study, we divided the early learning curve into five groups: Group 1 (Patients 1–30), Group 2 (Patients 31–60), Group 3 (Patients 61–90), Group 4 (Patients 91–120), and Group 5 (Patients 121–150). One hundred twelve patients (75%) had spinal deformity and 80 patients (53%) had previous spine surgery. The accuracy of screw placement in the groups was assessed based on intraoperative biplanar fluoroscopy and postoperative radiographs. The results from these five groups were compared to determine the effect on the learning curve. The numbers of attempted pedicle screw placements were 359, 312, 349, 359, and 320 in Groups 1 to 5, respectively. RESULTS: The rates of successfully placed screws using robotic guidance were 82%, 93%, 91%, 95%, and 93% in Groups 1 to 5. The rates of screws converted to manual placement were 17%, 7%, 8%, 4%, and 7%. Of the robotically placed screws, the screw malposition rates were 0.8%, 0.3%, 1.4%, 0.8%, and 0%. CONCLUSIONS: The rate of successfully placed pedicle screws improved with increasing experience. The rate of the screws that were converted to manual placement decreased with increasing experience. The frequency of screw malposition was similar over the learning curve at 0% to 1.4%. Future studies will need to determine whether this finding is generalizable to others. LEVEL OF EVIDENCE: Level III, therapeutic study. See the Instructions for Authors for a complete description of levels of evidence
Prevalence and Factors Affecting Cervical Deformity in Adolescent Idiopathic Scoliosis Patients
Revision Spine Surgery in Patients without Clinical Signs of Infection: How Often are There Occult Infections in Removed Hardware?
Evolving myelodysplastic syndrome in an HIV patient with history of anal cancer and chemotherapy
Revision Adult Spinal Deformity Surgery: Does the Number of Previous Operations Have a Negative Impact on Patient Outcome?
Revision versus Primary Adult Spinal Deformity Surgery: Comparison of Radiographic and Clinical Outcomes
Primary or Metastatic Spine Tumors with Back/Neck and/or Radicular Pain as Initial Presentation: Experience from a Scoliosis and Spine Tumor Center at a Community Hospital
- …
