4 research outputs found
流体力学软件众核架构适应性研究
本文给出了第十届全国流体力学学术会议论文摘要的模板。除特殊格式、字号、字体说明外,一律用宋体5号字,单倍行距,两端对齐。请提交Word版本电子文档。请将1页摘要,A4纸,版心设定为:19cm*25cm,页边距设定为:上下5cm,左右3cm (写明通讯地址、邮编和电子邮件)通过邮箱cstam [email protected]提交。近年来众核异构计算机系统盛行,现有流体力学软件需进行众核级并行算法设计和优化才能适应众核处理器架构。本文首先介绍了"神威太湖之光"众核处理器体系结构及编程模型,然后分析了流体力学软件众核适应性难题,最后通过理论分析和实验给出典型流体力学软件的众核并行效率
基于十亿亿次国产超算系统的流体力学软件众核适应性研究
国产众核处理器提供了两种移植难度相差较大的众核级并行编程语言。不同流体力学软件对众核架构适应性的不同,决定了它们在移植优化过程中适合于不同的编程语言。首先介绍了国产众核处理器的体系结构、编程模型和并行编程语言;然后分析了流体力学软件应用于国产众核处理器存在的挑战性问题,包括隐格式带来的数据相关性、大型稀疏矩阵线性代数方程组求解、多重网格方法和非结构网格等,这些问题限制了软件对众核架构的适应性。文中针对这些难题分别提出了创新的优化算法,并通过理论分析和实验得到了几种典型流体力学软件的众核适应性研究结论。实践证明,多数流体力学软件对国产众核处理器的适应性良好,能够采用OpenACC编译器自动移植,并扩展到百万核并行规模,保持较高的并行效率。</p
3种沙地植物光合碳同化对环境因子的生理响应/Physiological Responses of the Photosynthetic Carbon Assimilation to Environmental Factors in three Sandy Plants[J]
Prediction of Energy Resolution in the JUNO Experiment
International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors
