885 research outputs found

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Retropubic, laparoscopic and mini-laparoscopic radical prostatectomy : a prospective assessment of patient scar satisfaction

    Get PDF
    Published online: 26 October 2014PURPOSE: To compare patient scar satisfaction after retropubic, standard laparoscopic, mini-laparoscopic (ML) and open radical prostatectomy (RP). METHODS: Patients undergoing RP for a diagnosis of localized prostate cancer at a single academic hospital between September 2012 and December 2013 were enrolled in this prospective nonrandomized study. The patients were included in three study arms: open surgery, VLP and ML. A skin stapler was used for surgical wound closure in all cases. Demographic and main surgical outcomes, including perioperative complications, were analyzed. Surgical scar satisfaction was measured using the Patient and Observer Scar Assessment Questionnaire (POSAS) and the two Body Image Questionnaire (BIQ) scales, respectively, recorded at skin clips removal and either at 6 months after surgery. RESULTS: Overall, 32 patients were enrolled and completed the 6 month of follow-up. At clips removal, laparoscopic approaches offered better scar result than open surgery according to the POSAS. However, at 6 months, no differences were detected between VLP and open, whereas ML was still associated with a better scar outcome (p = 0.001). This finding was also confirmed by both BIQ scales, including the body image score (ML 9.8 ± 1.69, open 15.73 ± 3.47, VLP 13.27 ± 3.64; p = 0.001) and the cosmetic score (ML 16.6 ± 4.12, open 10 ± 1.9, LP 12.91 ± 3.59; p = 0.001). Small sample size and lack of randomization represent the main limitations of this study. CONCLUSIONS: ML RP offers a better cosmetic outcome when compared to both open and standard laparoscopic RP, representing a step toward minimal surgical scar. The impact of scar outcome on RP patients' quality of life remains to be determined

    TET1 is a tumor suppressor of hematopoietic malignancy

    Get PDF
    The methylcytosine dioxygenase TET1 (‘ten-eleven translocation 1’) is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.National Institutes of Health (U.S.) (5RO1HD045022)National Institutes of Health (U.S.) (5R37CA084198

    Restoring brain function after stroke - bridging the gap between animals and humans

    Get PDF
    Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke

    Accuracy of rapid radiographic film calibration for intensity‐modulated radiation therapy verification

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135342/1/acm20086.pd

    Is sleep disruption a risk factor for Alzheimer’s disease?

    Get PDF
    Sleep disturbances are routinely encountered in Alzheimer’s disease (AD) and affect about 25–40% of patients in the mild-to-moderate stages of the disease. In many, sleep pathology may represent a symptom of the underlying neurodegeneration. However, a history of sleep disruption occurring years prior to onset of cognitive symptoms could represent a potential risk factor for AD. The aim of the present narrative review was to evaluate current evidence linking sleep disturbances with AD development and to understand the mechanisms that may contribute to this. Although the mechanisms by which poor sleep may contribute to AD genesis is not fully understood, emerging evidence linking disturbances in the sleep wake cycle with Aβ deposition is shedding light on the relationship between sleep pathology and the subsequent development of AD. Aβ burden appears to be enhanced by sleep-wake cycle disruptions and is suspected as being an important mechanism by which sleep disruptions contribute in AD development. Other mechanisms triggered by sleep disruption may also be involved in AD development, such as brain hypoxia, oxidative stress, circadian activity rhythms disturbances, overexpression of orexins, and blood-brain barrier impairment. Further understanding of the link between sleep disturbances and future development of AD is still needed before sleep disturbances are clearly marked as a preventable risk factor for AD. In these circumstances, early lifestyle interventions to help increase the quantity and quality of sleep may have a favorable outcome on decreasing the incidence of AD and this needs to be investigated further

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore