99 research outputs found
오염물질의 분해를 위한 헤마타이트의 일과황산염 활성화
학위논문 (석사) -- 서울대학교 대학원 : 공과대학 화학생물공학부, 2021. 2. 이창하.헤마타이트(α-Fe2O3)는 일과황산염(PMS)을 활성화시켜 다양한 수중 유기오염물질을 산화 분해하는 것으로 알려졌다. 헤마타이트에 의해 활성화된 일과황산염은 페놀류를 효과적으로 분해한다. 페놀 분해에 대한 pH, 촉매 주입량, 산화제 농도의 영향이 평가되었다. 본 실험 결과는 설페이트 라디칼과 하이드록실 라디칼 같은 라디칼 종에 반대되는 증거를 제시한다. 라디칼 스캐빈저, XTT, 음이온, 전자스핀 공명 분광기를 이용한 실험은 이전에 제시된 라디칼 메커니즘이 아님을 제시한다. 일중항산소 스캐빈저 실험은 페놀 분해를 억제할 수 있지만 전자스핀 공명 분광기 분석과 중수 실험에 의해 일중항산소의 가능성을 부정할 수 있다. 또한, 헤마타이트에 의한 PMS 분해와 전기화학적 분석은 전자전달 매게 복합체로의 역할을 하지 않음을 뒷받침한다. 본 실험 결과는 헤마타이트/일과황산염 시스템에 의한 유기 오염물질의 활성 반응 종으로 고원자가 철을 제시한다. 헤마타이트 표면에서 생성된 4가철이 유기오염물질을 산화 분해하는 역할을 한다.Hematite (α-Fe2O3) was found to activate peroxymonosulfate (PMS) for oxidizing organic compounds in aqueous environments. α-Fe2O3 activated PMS can effectively degrade phenolic compounds (i.e., phenol, bisphenol A, and 2,4,6-trichlorophenol). The effects of pH, catalyst dosage, and PMS concentration on phenol degradation were investigated. The observations obtained in this study provided evidence against the generation of reactive species such as sulfate radical, hydroxyl radical, superoxide radical, and singlet oxygen. Radical scavenger (i.e., tert-butanol, methanol, and p-benzoquinone) test, superoxide radical probe test, anion (i.e., H2PO4−, ClO4−, NO3− and Cl−) test, and electron paramagnetic resonance spectroscopy suggest that the oxidation mechanism does not likely involve the previously proposed radical mechanisms. Although singlet oxygen scavengers (i.e., furfuryl alcohol, azide ion, and L-histidine) could inhibit the phenol degradation, EPR spectroscopy and deuterium oxide test deny the responsible for singlet oxygen in α-Fe2O3/PMS system. PMS decomposition by α-Fe2O3 and electrochemical analysis rebuff the electron mediated reactive complex. Based on the observations from this study, it is suggested that a high-valent iron species (Fe(IV)) is the reactive species of the α-Fe2O3/PMS system. FeIV=O generated on the surface of α-Fe2O3 appears to be the responsible oxidant for the degradation of organic contaminants.CONTENTS
Abstract i
Contents iii
List of Figures v
List of Tables viii
1. Introduction 1
2. Materials and Methods 5
2.1. Reagents 5
2.2. EPR spectroscopy 6
2.3. Electrochemical analysis 6
2.4. PMS treatment of α-Fe2O3 and the characterization 7
2.5. Experimental setup and procedure 7
2.6. Analytical methods 8
3. Results and Discussion 9
3.1. Degradation of organic compounds by α-Fe2O3/PMS system 9
3.2. Effects of reaction parameters on phenol degradation 13
3.3. Mechanism of PMS activation by α-Fe2O3 16
3.3.1. Effects of scavengers 16
3.3.2. Effects of anions 20
3.3.3. EPR analysis 22
3.3.4. Electron mediated reactive complex 24
3.3.5. PMS treatment of α-Fe2O3 26
3.3.6. High-valent iron species (Fe(IV)) 30
Chapter 4. Conclusions 34
References 35
요약(국문초록) 45
감사의 글 46Maste
확장칼만필터를 이용한 무인잠수정의 항법알고리즘 연구
Navigation technology is vital to determine where Unmanned Underwater Vehicle (UUV) is located. This is essential to complete missions, such as submarine resource development, marine geological survey, marine ecological survey and mine clearance, and make information gathered during the mission more accurate, reliable and valuable. Dead reckoning that commonly uses Inertia Measurement Unit (IMU), Doppler Velocity Logger (DVL) and magnetic compass has position errors due to integrating acceleration and velocity. Moreover, the heading error of magnetic compass based on geodetic north includes declination and sensor noise caused by local magnetic-field effect and characteristics of sensor. This could raise the position error in the North-East-Down (NED) coordinate system in the case of dead reckoning especially using magnetic compass, because it is based on not geodetic north, but magnetic north. This makes it difficult to implement an integrated navigation system or compare the performance of navigation algorithms, such as dead reckoning, satellite navigation using Global Positioning Systems (GPS) and terrain-aided navigation using bathymetry maps.
This thesis introduces a GPS-aided navigation algorithm to reduce errors accumulated while using dead reckoning navigation. This will help better estimate the position of UUVs while using dead reckoning in the NED coordinate system. For sensor fusion and measurement noise rejection, the navigation algorithm was designed to use an Extended Kalman Filter (EKF), which has much fewer calculations than an Unscented Kalman Filter (UKF) and a Particle Filter (PF).
This algorithm defined the heading bias error of a magnetic compass as the difference between the UUV heading angle based on geodetic north and a magnetic compass’ heading measurement. The magnetic compass’ heading bias error was asymptotically estimated by receiving GPS positional data when it surfaced. When the navigation algorithm estimated the magnetic compass’ heading bias error, the UUV’s position was displayed in the NED coordinate system, even when the UUV was submerged.
While using Matlab Simulink, an Autonomous Underwater Vehicle (AUV) dynamic simulation program was built to check the performance of the proposed navigation algorithm. The simulation program consists of a dynamic model, a sensor model, a controller and the navigation algorithm. A Naval Postgraduate School (NPS) AUV called as ARIES was used as the dynamic model because of its detailed dimensions and its precedent research containing large amounts of hydrodynamic coefficients.
Furthermore, the sensor model’s characteristics were decided on according specifications and test results of sensors currently in use. Considering the sensor characteristics, the measured values of GPS, magnetic compass, DVL, gyro and pressure sensor are artificially generated on the basis of the position, attitude and velocity of AUV in the simulation. After receiving the data, the navigation algorithm estimates the compass’ heading bias error and the AUV’s position allowing control of the AUV and the ability to perform way-points and heading control simulation.
The simulation incorporates three different scenarios. Two of them determine and estimate the AUV’s position and heading bias error after receiving(or not) the GPS positional data. The other uses trajectory and heading bias errors similar to those in the field test which allows comparisons of the field test results.
The simulations will show that the navigation algorithm improves the accumulated positional errors of dead reckoning and the magnetic compass’ heading bias errors. In the underwater driving scenario, it was confirmed that the AUV’s position errors were improved. This was accomplished by the navigation algorithm examining the magnetic compass’ heading bias error compared to the conventional dead reckoning method.
The GPS-aided navigation algorithm was applied to navigation system of a hovering-type AUV in order to verify the performance of the algorithm through field test. The applied algorithm estimates the position and attitude of the AUV and the heading bias error of Tilt-compensated Compass Module (TCM) based on geodetic north, by receiving the measurements of GPS, DVL, TCM and Attitude & Heading Reference System (AHRS). The monitoring and control system based on LabVIEW was implemented to provide the operator with the information about the AUV’s operation. Also, the AUV operating system includes the propulsion system to perform the heading control experiment or the way-point control experiment, which can be configured by the operator. Unlike the simulation, the application of GPS positional data and the estimation of TCM heading bias error depend on additional conditions for the efficient application of the navigation algorithm in the field test. In other words, the navigation algorithm utilizes GPS positional data to estimate the position and attitude of the AUV and the TCM heading bias error, so long as the positional information is judged to be efficient. Otherwise, the position and attitude of the AUV are estimated by dead reckoning considering the heading bias error of TCM obtained previously.
As a result, the field test verified the performance of the navigation algorithm, by checking how precisely and accurately the TCM heading bias error was estimated and comparing the position error with the conventional dead reckoning, which was not considering the heading bias error.
This thesis proposes the GPS-aided navigation algorithm for UUV. The algorithm’s performance was verified by the simulation and field test. When there is no positional information provided by acoustic beacon and bathymetry map due to long-term and long-distance voyage, the navigation algorithm can be a crucial part of a UUV’s navigation technology.CHAPTER 1 INTRODUCTION
1.1 Background 2
1.2 Objective of research 5
1.3 Organization of the thesis 9
CHAPTER 2 GPS-AIDED NAVIGATION ALGORITHM
2.1 Design of navigation algorithm 10
2.1.1 System model 10
2.1.2 Measurement model 11
2.1.3 Navigation algorithm using extended Kalman filter 12
CHAPTER 3 DYNAMIC SIMULATION
3.1 Dynamic simulation program 15
3.1.1 Block diagram of dynamic simulation 16
3.2 Dynamic model 17
3.2.1 Coordinate system 17
3.2.2 Kinematics 19
3.2.3 Kinetics 21
3.2.3.1 Rigid body dynamics 22
3.2.3.2 Restoring forces and moments 25
3.2.3.3 Equations of motion 27
3.2.3.4 Ocean currents 34
3.3 Sensor model 35
3.4 Controller 36
3.5 Scenarios 38
3.6 Simulation results 41
CHAPTER 4 FIELD TEST
4.1 Hovering-type AUV platform 62
4.1.1 Dimensions and specifications 62
4.1.2 Boards 64
4.1.3 Sensors 66
4.1.4 Thrusters 72
4.2 Operating system 73
4.3 Experimental overview 76
4.4 Field test results 76
CHAPTER 5 CONCLUSION 84
References 86
Acknowledgement 90Maste
녹차 섭취와 위암 위험 : 메타 분석
Dept. of Epidemiology and Biostatistics/석사[한글]
녹차는 오래 전부터 아시아 지역에서 소비되어 온 기호식품으로 실험실 연구를 통해 이의 추출물이 위암을 포함한 암세포의 발생과 성장을 억제하는 것으로 알려져 왔다. 그렇지만 녹차 섭취와 위암 위험의 관계에 대한 다양한 역학적 연구 결과를 병합하려는 시도는 현재까지 이루어지지 않고 있다. 이 연구의 목적은 기존에 출판된 연구 결과를 토대로 메타 분석을 통하여 녹차 섭취와 위암 위험 사이의 관계를 밝히려는 것이다.MEDLINE, THE COCHRANE LIBRARY, 한국학술정보원 데이터베이스와 이를 통해 찾은 자료의 참고 문헌을 조사하여 총 열 여덟 편의 관찰 연구를 확인하였다. 각 연구에서 녹차의 최다 섭취군과 최저 섭취군 사이의 승산비 또는 비교위험도를 병합하였으며, 통합 효과 크기는 동질성 검정 결과에 따라 고정 효과 모형 혹은 확률 효과 모형을 사용하여 계산하였다. 각 연구 사이의 이질성을 설명하기 위해서 메타 회귀 분석 및 층화 분석을 실시하였고, 결과의 확고성을 확인하기 위하여 영향력 분석을 실시하였다.통합승산비는 0.86, 95% 신뢰구간은 0.74-1.00으로 녹차 섭취와 위암 위험 사이에는 유의한 음의 상관 관계가 존재하였다. 녹차의 위암에 대한 보호 효과는 열 두 개의 환자-대조군 연구 (통합승산비 0.74, 95% 신뢰구간 0.63-0.86) 와 중국에서 시행된 다섯 개의 연구 (통합승산비 0.61, 95% 신뢰구간 0.47-0.81) 에서 두드러지게 나타났다. 특히 측정된 최다 녹차 섭취량과 최저 녹차 섭취량의 차이가 하루 5 잔 이상 나는 연구들에서 통계적으로 유의한 보호 효과가 확인되었다. (통합승산비 0.68, 95% 신뢰구간 0.53-0.87)결론적으로 녹차는 위암에 대해 보호 효과를 보이는 것으로 확인되었다. 또한 이러한 효과는 많은 양의 녹차를 소비할 때 더 두드러지게 나타날 것으로 추정되었다. 그러나 관찰 연구에 대한 메타 분석의 방법론적 한계와 이 연구에서의 출판 편견의 가능성 등을 고려할 때, 이러한 결과는 조심스럽게 해석되어야 할 것이다.
[영문]Green tea has been suggested to have a chemopreventive effect against various cancers including stomach cancer. No attempt has been made, however, to quantitatively summarize the results of epidemiological researches on green tea consumption and stomach cancer risk so far. The aim of this study is to elucidate the relationship between green tea consumption and stomach cancer risk by meta-analysis of previously published data.Eighteen observational studies were identified using MEDLINE, THE COCHRANE LIBRARY, RISS, and a manual search. Summary odds ratios (ORs) for the highest versus non/lowest green tea consumption levels were calculated based on fixed and random effect models. The meta-regression analysis and stratified analyses were usedto examine heterogeneity across the studies. Influence analysis was done to test robustness of the analysis.The combined result indicates a reduced risk of stomach cancer with intake of green tea (summary OR=0.86, 95% confidence interval(CI)=0.74-1.00). The protective effect was mainly found among twelve case-control studies (summary OR=0.74, 95% CI=0.63-0.86) and among five Chinese studies (summary OR=0.61, 95% CI=0.47-0.81). Notably, subgroup analysis with six studies which reported differences between the highest and lowest consumption levels equal to or greater than 5 cups/day revealed a statistically significant protective effect (summary OR=0.68, 95% CI=0.53-0.87).Green tea appears to play a protective role in the development of stomach cancer. The result also implies that a higher level of green tea consumption might be needed for a clear preventive effect to appear. This conclusion, however, should be interpreted with caution because various biases can affect the result of a meta-analysis of observational studies.ope
동아시아 여름 몬순의 지역 기후 모의에서 고분해 지면 과정과 토양 수분-강수의 상호 작용
Thesis (doctoral)--서울대학교 대학원 :지구환경과학부,2003.Docto
Mutual Information-based Multi-output Tree Learning Algorithm
Doctor최근 인공지능 기술의 비약한 발전에 따라서 인공지능 기술을 산업 및 제조업에 적용하려는 시도가 늘어나고 있다. 포스코도 스마트 팩토리(Smart Factory)라는 명분하에 제철소 여러 공정에 인공지능 기술을 적용하는 사례가 보고되고 있다. 제조업에서 인공지능 기술의 활용도를 높이기 위해서 필요한 요구사항은 크게 2가지를 들 수 있다. 첫째, 모델의 해석이 용이해야 한다. 둘째, 제조업에 사용되는 인공지능은 Big-data와 같이 사이즈가 큰 데이터를 학습하는 것이 일반적이기 때문에 시간 효율적인 학습 모델 및 알고리즘이 필요하다. 상기 2가지 요구조건을 모두 만족 시키는 학습 모델은 트리 (Tree) 모델을 들 수 있다. 여러 제조 공정에서 다중 출력의 분류, 회귀 문제가 일반적이며 본 논문에서는 다중 출력의 트리를 시간 효율적으로 학습하는 알고리즘을 개발하는 것이 목적이다.
변수 선택 기반의 트리 알고리즘은 시간 효율을 극대화 시킬 수 있다. 하지만 기존의 다중 출력 트리 알고리즘은 범주형 데이터를 다루지 못하거나, 출력의 차원이 큰 데이터를 학습할 때 시간효율이 떨어지는 문제점을 가지고 있다.
본 논문에서 제안하고자 하는 알고리즘은 크게 2파트(변수 선택, 분지 최적화)로 나누어져 있다. 변수 선택은 학습하고자 하는 데이터의 각 입력 변수와 전체 출력변수를 이산화 하고, 이산화된 입력 변수와 출력변수간의 상관관계를 상호의존정보(Mutual information)를 이용하여 변수를 선택한다. 이산화는 k-means/k-modes 알고리즘을 사용하여 변수의 종류에 상관없이 시간효율적으로 수행될 수 있도록 한다. 선택된 변수에서 분지 최적화를 위해서 k-means 알고리즘(k=2)을 적용하여 두개의 그룹으로 나누고 두 그룹의 양 끝단값 평균값을 최적 분지로 설정한다. 이상의 2파트에서 다음과 같은 2개의 알고리즘을 제시한다.
Proposed1: 상호의존정보기반 변수 선택(입력, 출력을 각각 4개의 그룹으로 이산화), 선택된 변수에서 완전 검색을 통한 분지 선택
Proposed2: 상호의존정보기반 변수 선택(입력, 출력 각각 2개의 그룹으로 이산화), k-means 알고리즘(k=2)기반 분지 최적화
제안된 알고리즘을 공개 데이터셋에 적용한 결과 제안된 알고리즘은 사이즈가 큰 데이터셋에서 기존의 CART(Classification And Regression Tree)대비 유사한 수준의 정확도를 가지며, 시간 효율이 높음을 확인할 수 있었다. 특히 데이터 인스턴스, 입력변수의 개수, 출력변수의 차원이 클수록 시간효율이 높아짐을 확인할 수 있었다.
제안된 알고리즘을 포스코 압연기 셋업(Mill setup) 모델에 적용한 결과 종전의 신경망 모델 대비 1/10수준으로 학습시간이 줄어들고, RRMSE도 통게적으로 유의하게 낮아짐을 확인 할 수 있었다. 특히 학습 시간이 압연 생산시간 보다 작어져서 온라인 학습도 적용 가능할 것으로 판단된다. 제안된 알고리즘을 이용하여 매 코일 업데이트된 학습 모델을 통해서 셋업이 계산되고, 이로 인하여 작업자의 수동개입이 줄어 들것으로 예상된다. 압연기 셋업의 정확도 향상에 따라서 압연 생산성이 올라가고, 균일한 표면 품질을 가지는 제품을 생산할 수 있을 것으로 판단된다.A tree model with low time complexity can support the application of artificial intelligence to industrial systems. Variable selection based tree learning algorithms are more time efficient than existing Classification and Regression Tree (CART) algorithms. However, variable selection algorithms cannot handle categorical variables and are not suitable to large datasets. In this paper, we propose a mutual information-based multi-output tree learning algorithm that consists of variable selection and split optimization. The proposed method discretizes each variable based on k-means into 2–4 clusters and selects the variable for splitting based on the discretized variables using mutual information. This variable selection component has relatively low time complexity and can be applied regardless of output dimension and types. The proposed split optimization component is more efficient than an exhaustive search method because it finds the split based on a k-means algorithm. The performance of the proposed tree learning algorithm is similar to or better than that of a multi-output version of CART algorithm on a specific dataset. In addition, with a large dataset, the time complexity of the proposed algorithm is significantly reduced compared to a CART algorithm.
To evaluate the performance of the proposed algorithms, we applied them to the set-up of the rolling reduction rate of a tandem cold mill for stainless steel in POSCO. In a tandem cold mill for stainless steel, an optimum reduction rate is necessary for each stand. A conventional mill set-up uses a lookup-table to optimize the rolling schedule. However, reflecting all input conditions and manual interventions on a model is difficult. In this thesis, we propose a mill set-up model that can efficiently predict the reduction rate for each stand by considering various input conditions. The newly proposed reduction rate learning model can give rise to multi-output regression problems. According to the experiment results, the proposed algorithm exhibits a higher level of RRMSE and time efficiency compared with the existing neural network model. As a result, it is considered that on-line learning can be implemented by applying the proposed algorithm in the set-up problem of the rolling. Also, the proposed model is easy to interpret, so it will be highly useful in the actual practice
Comparative Study on the Contents of Elementary Writing Education in North-South Korea -focused on ‘2015 revised Korean Curriculum’ in South and ‘2013 revised Korean Curriculum’ in North-
An Exploration on Teachers' Experience and Perception in Competency-Based Curriculum Implementation
Comparison of Expressive Aspect and Perception in Smartphone Messenger -Focused on Questionnaires-
- …
