2 research outputs found
재귀 예측 네트워크: 미래 경로 피드백을 이용한 주변 차량 경로 예측
학위논문(석사) - 한국과학기술원 : 조천식녹색교통대학원, 2020.2,[iv, 56 p. :]The perception and control technology for autonomous vehicles shows significant advances owing to the deep learning techniques. On the other hand, the prediction technology for the future motion of surrounding vehicles remains a challenging problem due to the complexity of vehicle motion. Accidents of autonomous vehicles from Google and Uber can also be attributed to inaccurate predictions. The motion of a vehicle is not only determined by the intention of the driver but is influenced by various interactions with other vehicles. In order to tackle this problem, various approaches for vehicle motion prediction have been developed, but these approaches failed to predict future motion accurately because they use only current and historical information. These future interactions are difficult to predict from current and historical information. Therefore, in this thesis, a vehicle trajectory prediction network that can consider not only current and past interaction but also future interactions, which have not yet happened, is proposed. To this end, a recursive structure, which uses the output of the network as input again, is added to a Long Short Term Memory (LSTM) based encoder-decoder model. With this recursive structure, the model can use the predicted future trajectory together with the current and past information of surrounding vehicles, and this makes the model possible to predict the future trajectory considering future interaction. The proposed method can be expected to play a vital role in moving forward to fully autonomous driving by improving the reliability of prediction technology.한국과학기술원 :조천식녹색교통대학원
ELECTRONIC DEVICE FOR PREDICTION USING RECURSIVE STRUCTURE AND OPERATING METHOD THEREOF
다양한 실시예들에 따른 전자 장치 및 그의 동작 방법은, 제 1 시간 간격의 입력 데이터를 검출하는 동작, 미리 설정된 재귀 네트워크를 이용하여, 입력 데이터로부터 제 2 시간 간격의 제 1 예측 데이터를 검출하는 동작, 및 재귀 네트워크를 이용하여, 입력 데이터 및 제 1 예측 데이터로부터 제 3 시간 간격의 제 2 예측 데이터를 검출하도록 구성될 수 있다. 다양한 실시예들에 따르면, 재귀 네트워크는, 입력 데이터 또는 제 1 예측 데이터 중 적어도 어느 하나를 기반으로, 복수 개의 특징 벡터들을 각각 검출하도록 구성되는 인코더, 특징 벡터들의 중요도들을 각각 계산하도록 구성되는 어텐션 모듈, 및 중요도들을 기반으로, 제 1 예측 데이터 또는 제 2 예측 데이터 중 적어도 어느 하나를 출력하도록 구성되는 디코더를 포함할 수 있다
