12 research outputs found

    A chimeric thermostable M2e and H3 stalk-based universal influenza A virus vaccine

    Get PDF
    We developed a new chimeric M2e and H3 hemagglutinin (HA) stalk protein vaccine (M2e-H3 stalk) by genetic engineering of modified H3 stalk domain conjugated with conserved M2e epitopes to overcome the drawbacks of low efficacy by monomeric domain-based universal vaccines. M2e-H3 stalk protein expressed and purified from Escherichia coli was thermostable, displaying native-like antigenic epitopes recognized by antisera of different HA subtype proteins and influenza A virus infections. Adjuvanted M2e-H3 stalk vaccination induced M2e and stalk-specific IgG antibodies recognizing viral antigens on virus particles and on the infected cell surface, CD4+ and CD8+ T-cell responses, and antibody-dependent cytotoxic cell surrogate activity in mice. M2e-H3 stalk was found to confer protection against heterologous and heterosubtypic cross-group subtype viruses (H1N1, H5N1, H9N2, H3N2, H7N9) at similar levels in adult and aged mice. These results provide evidence that M2e-H3 stalk chimeric proteins can be developed as a universal influenza A virus vaccine candidate for young and aged populations.ope

    A Host-Restricted Self-Attenuated Influenza Virus Provides Broad Pan-Influenza A Protection in a Mouse Model

    Get PDF
    Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.ope

    Epigallocatechin-3-Gallate as a Novel Vaccine Adjuvant

    Get PDF
    Vaccine adjuvants from natural resources have been utilized for enhancing vaccine efficacy against infectious diseases. This study examined the potential use of catechins, polyphenolic materials derived from green tea, as adjuvants for subunit and inactivated vaccines. Previously, catechins have been documented to have irreversible virucidal function, with the possible applicability in the inactivated viral vaccine platform. In a mouse model, the coadministration of epigallocatechin-3-gallate (EGCG) with influenza hemagglutinin (HA) antigens induced high levels of neutralizing antibodies, comparable to that induced by alum, providing complete protection against the lethal challenge. Adjuvant effects were observed for all types of HA antigens, including recombinant full-length HA and HA1 globular domain, and egg-derived inactivated split influenza vaccines. The combination of alum and EGCG further increased neutralizing (NT) antibody titers with the corresponding hemagglutination inhibition (HI) titers, demonstrating a dose-sparing effect. Remarkably, EGCG induced immunoglobulin isotype switching from IgG1 to IgG2a (approximately >64-700 fold increase), exerting a more balanced TH1/TH2 response compared to alum. The upregulation of IgG2a correlated with significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) function (approximately 14 fold increase), providing a potent effector-mediated protection in addition to NT and HI. As the first report on a novel class of vaccine adjuvants with built-in virucidal activities, the results of this study will help improve the efficacy and safety of vaccines for pandemic preparedness.ope

    Comparison of the effects of different potent adjuvants on enhancing the immunogenicity and cross-protection by influenza virus vaccination in young and aged mice

    Get PDF
    Vaccination against influenza viruses suffers from low efficacy in conferring homologous and cross-protection, particularly in older adults. Here, we compared the effects of three different adjuvant types (QS-21+MPL, CpG+MPL and bacterial cell wall CWS) on enhancing the immunogenicity and homologous and heterosubtypic protection of influenza vaccination in young adult and aged mouse models. A combination of saponin QS-21 and monophosphoryl lipid A (QS-21+MPL) was most effective in inducing T helper type 1 (Th1) T cell and cross-reactive IgG as well as hemagglutination inhibiting antibody responses to influenza vaccination. Both combination adjuvants (QS-21+MPL and CpG+MPL) exhibited high potency by preventing weight loss and reducing viral loads and enhanced homologous and cross-protection by influenza vaccination in adult and aged mouse models. Bacillus Calmette-Guerin cell-wall skeleton (CWS) displayed substantial adjuvant effects on immune responses to influenza vaccination but lower adjuvant efficacy in inducing Th1 IgG responses, cross-protection in adult mice, and in conferring homologous protection in aged mice. This study has significance in comparing the effects of potent adjuvants on enhancing humoral and cellular immune responses to influenza virus vaccination, inducing homologous and cross-protection in adult and aged populations.ope

    RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.ope

    Enhanced cross protection by hetero prime-boost vaccination with recombinant influenza viruses containing chimeric hemagglutinin-M2e epitopes

    Get PDF
    Annual repeat influenza vaccination raises concerns about protective efficacy against mismatched viruses. We investigated the impact of heterologous prime-boost vaccination on inducing cross protection by designing recombinant influenza viruses with chimeric hemagglutinin (HA) carrying M2 extracellular domains (M2e-HA). Heterologous prime-boost vaccination of C57BL/6 mice with M2e-HA chimeric virus more effectively induced M2e and HA stalk specific IgG antibodies correlating with cross protection than homologous prime-boost vaccination. Induction of M2e and HA stalk specific IgG antibodies was compromised in 1-year old mice, indicating significant aging effects on priming subdominant M2e and HA stalk IgG antibody responses. This study demonstrates that a heterologous prime-boost strategy with recombinant influenza virus expressing extra M2e epitopes provides more effective cross protection than homologous vaccination.ope

    Impact of hemagglutination activity and M2e immunity on conferring protection against influenza viruses

    No full text
    To improve cross-protection of influenza vaccination, we tested conjugation of conserved M2e epitopes to the surface of inactivated influenza virus (iPR8-M2e*). Treatment of virus with chemical cross-linker led to diminished hemagglutination activity and failure to induce hemagglutination inhibiting antibodies. Conjugated iPR8-M2e* vaccine was less protective against homologous and heterosubtypic viruses, despite the induction of virus-specific binding IgG antibodies. In alternative approaches to enhance cross-protection, we developed a genetically linked chimeric protein (M2e-B stalk) vaccine with M2e of influenza A and hemagglutinin (HA) stalk of influenza B virus. Vaccination of mice with inactivated influenza A virus supplemented with M2e-B stalk effectively induced hemagglutination inhibiting antibodies, humoral and cellular M2e immune responses, and enhanced heterosubtypic protection. This study demonstrates the importance of HA functional integrity in influenza vaccine efficacy and that supplementation of influenza vaccines with M2e-B stalk protein could be a feasible strategy of improving cross-protection against influenza viruses.ope

    목면과 나일론 사를 이용한 Penicillin amidase 효소의 고정화 연구

    No full text
    학위논문 (석사) - 한국과학기술원 : 생물공학과, 1979.2, [ xii, 89 p. ]Penicillin amidase, an enzyme that hydrolyzed benzylpenicillin to yield 6-APA, was produced by culture of \mbox{\underline{Bacillus}} \mbox{\underline{megaterium}} (ATCC 14945) and purified 70 fold by means of adsorption on Celite followed by dialysis or ammonium sulfate precipitation. Little attempts have been made to utilize synthetic nylon fiber and natural cotton for enzyme immobilization. New enzymatic process for the preparation of 6-APA was developed by employing the enzyme immobilized onto these fibers as carriers. The feasibility of utilizing these materials as enzyme carriers was studied by evaluating four different immobilization methods. Cotton was activated with CNBr or TiCl4TiCl_4, followed by coupling of enzyme. The optimal pH for activation was found in the range of 11.5 to 12, and the amount of protein coupled to cotton was as high as 163 mg/g of cotton matrix, showing a good possibility of employing natural cellulosic fiber as an enzyme carrier. Activation with TiCl4TiCl_4 was not recommended because of degradation of fiber structure by strongly acidic TiCl4TiCl_4 solution. Native nylon polymer has few end groups, and it must be pretreated in order to generate potentially reactive groups that can be covalently bound with enzyme molecule. Therefore, the nylon fiber was treated with N,N-dimethylaminopropylamine of HCl to generate reactive amino groups on it, and the enzyme was coupled to it by crosslinking with glutaraldehyde. Only 11\% of enzyme activity was retained by employing N,N-dimethylaminopropylamine, so the partial hydrolysis with HCl was further investigated. The optimal hydrolysis time was found about 5 to 10 minutes at 45^\circC when 3.75N-HCl solution was used. Under these conditions, the amount of enzyme coupled onto the nylon was up to 63mg/g nylon matrix, and the activity retention was as high as 72\%. From the experiments on the effect of enzyme loading, two interesting features were found. First, the maximum coupling efficiency w...한국과학기술원 : 생물공학과
    corecore