5 research outputs found

    Adaptive Filtering for Aggregation in Sensor Networks

    No full text
    센서들이 측정한 데이타의 평균값 등을 구하는 집계연산은 센서 네트워크에서 자주 사용되는 응용이다. 센서 네트워크를 구성하는 센서는 작은 배터리로 작동되기 때문에 센서의 에너지 소모를 줄이는 것은 센서 네트워크의 중요한 문제이다. 센서의 에너지 소모를 줄이기 위한 가장 중요한 요소는 전송되는 메시지 수를 줄이는 것인데, 네트워크 내 집계연산과 데이타 필터링이 집계연산 시 전송되는 메시지 수를 줄이기 위한 효과적인 방법이라고 알려져 있다. 네트워크 내 집계연산과 데이타 필터링을 동시에 수행하면 더 많은 메시지를 줄일 수 있으며, 최근에 이 방법을 근간으로 한 연구가 있었다. 본 논문에서는, 기존의 데이타 필터링 방법보다 더 효율적이고 효과적인 방법을 제안한다. 본 논문에서 제안하는 방법은 센서 노드의 자기 조정에 기반하고 있기 때문에 더 쉽고 간단하다. 다양한 실험을 통해서, 본 논문에서 제안하는 방법이 다른 방법들보다 더 많은 메시지를 줄이는 것을 확인하였다

    Efficient algorithms for constructing decision trees with constraints

    No full text
    학위논문(석사) - 한국과학기술원 : 전산학전공, 2000.8, [ vii, 48 p. ]한국과학기술원 : 전산학전공

    센서 네트워크에서 에너지 효율적인 질의 처리

    No full text
    학위논문(박사) - 한국과학기술원 : 전산학전공, 2007.2, [ ix, 85 p. ]A sensor network is a network of many small wireless sensor device nodes (called nodes, for short) embedded in the physical world. Owing to the dramatic advances of related technologies, sensor nodes themselves become smaller and cheaper as well as stronger in the aspect of computing power. As a result, sensor networks can be applied to diverse application areas demanding various query capabilities. Continuous query processing has been extensively discussed in many papers because the most common function of sensor networks is to report continuously sensed values through successive monitoring of environmental phenomena. Performance improvement for continuous query processing is important because continuous queries are processed many times, e.g., hundreds of thousands of times. In sensor networks, continuous query processing consists of two phases; \It{query transmission and routing tree construction} and \It{query result transmission}. In the former, a user query is transmitted to all nodes in the region specified by the query, and, at the same time, each nodes select its parent node to report its data. In this manner, both query transmission and routing tree construction are performed simultaneously. In the latter, each node in the routing tree periodically reports its result to its parent in a bottom up fashion. Generally, query transmission and routing tree construction is performed once while query result transmission is perform repeatedly. In this dissertation, we propose efficient methods for above both phases. For query transmission and routing tree construction phase, we considers a continuous query whose query region is specified by a KNN(K Nearest Neighbor) predicate. We proposed an efficient method to find the region specified by KNN predicate and to construct a more message-efficient routing tree. For query result transmission phase, we propose an efficient method to process continuous aggregation queries with tolerable erro...한국과학기술원 : 전산학전공

    Energy-Efficient Routing for Data Collection in Sensor Networks

    No full text
    연속 질의는 센서 네트워크에서 일반적으로 사용되는 질의로서, 한 번 요청되면 일정한 주기로 여러 번 실행되어 그 질의의 결과를 베이스 스테이션으로 모은다. 이것은 지속적으로 많은 메시지 전송을 유발시키므로 베이스 스테이션으로 데이타를 모으는 데 드는 통신 비용을 줄이는 것이 중요하다. 센서 네트워크에서 네트워크내 프로세싱 기법은 중간 노드에서 집계 질의의 결과 데이타들에 대해 부분 집계를 수행하거나 그 데이타들을 하나의 메시지에 담아 보냄으로써 메시지 전송 횟수를 줄이며, 이것은 결국 통신 비용을 줄인다.본 논문에서는 질의별로 구성되는 라우팅 트리인 질의 기반 라우팅 트리(Query Specific Routing Tree: QSRT)를 제안한다. QSRT의 핵심 아이디어는 네트워크내 프로세싱의 기회를 최대화하는 것이다. QSRT는 질의가 전달되는 과정을 통해 생성되며, 질의의 결과들이 베이스 스테이션으로 전달되는 도중 가능한 한 빨리 서로 만나게 만들어 부분 집계 및 패킷 합병의 기회를 최대화시킨다. 수행된 실험의 결과는 제안된 QSRT가 기존의 라우팅 트리보다 메시지 전송 횟수를 18% 이상 줄일 수 있음을 보여 준다

    An Efficient KNN Query Processing Method in Sensor Networks

    No full text
    기술의 발달로 센서의 기능이 더욱 강력해지면서, 센서 네트워크의 활용 분야는 더욱 다양해지고 있다. 센서 네트워크 어플리케이션을 사용하는 주 목적은 관심 지역(예, 공장 물품 창고, 재난 지역, 야생 서식지 등)에서 발생하는 현상들을 관찰하고, 유용한 정보를 얻기 위한 것이다. k-근접 노드(KNN: k Nearest Neighbor) 탐색 질의는 특정 위치에서 지리적으로 근접한 k개의 이웃 객체를 찾기 위한 질의로서, 센서 네트워크 환경에서도 중요한 어플리케이션 중 하나이다. 그러나 이전 방법들은 센서 네트워크 환경에서 사용하기 부적합하거나 에너지 효율성 문제를 가지고 있었다. 본 논문에서는 센서 네트워크 환경의 특성을 고려하면서, k개의 근접 노드를 에너지 효율적으로 탐색할 수 있는 방법을 제안한다. 제안하는 방법은 k개의 근접 노드를 찾을 때까지 탐색 영역을 점진적으로 확장하고, 영역 내 센서들을 선별적으로 방문하여 원하는 위치 정보를 얻어내는 것이다. 이를 통해 원하는 k개의 근접 노드를 찾아내면서도 에너지 소모를 줄일 수 있다. 본 논문에서는 제안하는 방법이 기존의 방법보다 효율적이라는 것을 다양한 조건의 실험을 통해 설명한다
    corecore