22,480 research outputs found
Resistance to novel drug classes
Understanding the mechanisms that underlie resistance
development to novel drugs is essential to a better clinical management of
resistant viruses and to prevent further resistance development and spread.
RECENT FINDINGS: Integrase inhibitors and CCR5 antagonists are the more recent
antiretroviral classes developed. The HIV-1 integrase, responsible for the
chromosomal integration of the newly synthesized double-stranded viral DNA into
the host genomic DNA, represents a new and important target; and two integrase
inhibitors (INIs), raltegravir and elvitegravir, have been shown promising
results in clinical trials. Viral entry is also an attractive step for the
development of new drugs against HIV variants resistant to current antiretroviral
drugs, and two CCR5 antagonists have been designed to inhibit HIV-1 binding to R5
co-receptor and are under clinical investigation.
SUMMARY: Drug resistance to INIs occurs through the selection of mutations within
HIV integrase. The kinetic of selection seems rapid and one mutation alone is
able to confer resistance to integrase inhibitor, suggesting that this class of
drug has a low genetic barrier. Two ways could explain the failure of the CCR5
antagonist class: a rapid outgrowth of pre-existing archived X4 virus or the
selection of a resistance to CCR5 antagonists through amino acid changes in V
The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances
The first stars in the Universe are predicted to have been much more massive
than the Sun. Gravitational condensation accompanied by cooling of the
primordial gas due to molecular hydrogen, yields a minimum fragmentation scale
of a few hundred solar masses. Numerical simulations indicate that once a gas
clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction
without further fragmentation. Here we show that as soon as the primordial gas
- left over from the Big Bang - is enriched by supernovae to a carbon or oxygen
abundance as small as ~0.01-0.1% of that found in the Sun, cooling by
singly-ionized carbon or neutral oxygen can lead to the formation of low-mass
stars. This mechanism naturally accommodates the discovery of solar mass stars
with unusually low (10^{-5.3} of the solar value) iron abundance but with a
high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early
epochs is partially regulated by the temperature of the cosmic microwave
background. The derived critical abundances can be used to identify those
metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by
the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature
Molecular analysis of hepatitis C virus infection in Bulgarian injecting drug users
Intravenous drug users constitute a group at risk for hepatitis C virus (HCV) infection. Today, no data are available on the molecular epidemiology of HCV in Bulgaria despite the fact that in recent years the incidence of acute hepatitis C infection among Bulgarian intravenous drug users increased sixfold and about 2/3 of them developed a chronic infection. The aim of this study was to determine the circulation of hepatitis C genotypes among drug users and to study the evolution and transmission history of the virus by molecular clock and Bayesian methods, respectively. Sequencing of NS5B gene showed that the genotype 3a was the most prevalent type among intravenous drug users. In the Bayesian tree, the 3a subtypes grouped in one main clade with one small cluster well statistically supported. The root of the tree was dated back to the year 1836, and the main clade from Bulgaria was dated 1960. The effective number of infections remained constant until about years 1950s, growing exponentially from the 1960s to the 1990s, reaching a plateau in the years 2000. The not significant intermixing with isolates from other countries may suggest a segregated circulation of the epidemic between 1940s and 1980s. The plateau reached by the epidemic in the early 2000s may indicate the partial success of the new preventive policies adopted in Bulgaria. J. Med. Virol. 83:1565-1570, 2011. © 2011 Wiley-Liss, Inc
Instantaneous Shape Sampling - a model for the -absorption cross section of transitional nuclei
The influence of the quadrupole shape fluctuations on the dipole vibrations
in transitional nuclei is investigated in the framework of the Instantaneous
Shape Sampling Model, which combines the Interacting Boson Model for the slow
collective quadrupole motion with the Random Phase Approximation for the rapid
dipole vibrations. Coupling to the complex background configurations is taken
into account by folding the results with a Lorentzian with an energy dependent
width. The low-energy energy portion of the - absorption cross section,
which is important for photo-nuclear processes, is studied for the isotopic
series of Kr, Xe, Ba, and Sm. The experimental cross sections are well
reproduced. The low-energy cross section is determined by the Landau
fragmentation of the dipole strength and its redistribution caused by the shape
fluctuations. Collisional damping only wipes out fluctuations of the absorption
cross section, generating the smooth energy dependence observed in experiment.
In the case of semi-magic nuclei, shallow pygmy resonances are found in
agreement with experiment
Comparative replication capacity of raltegravir-resistant strains and antiviral activity of the new-generation integrase inhibitor dolutegravir in human primary macrophages and lymphocytes
To evaluate the replication capacity and phenotypic susceptibility to dolutegravir and raltegravir of wild-type and raltegravir-resistant HIV-1 strains in several cellular systems
Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles
The distribution function of the local density of states is computed exactly
for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of
time-reversal symmetry, precise agreement is obtained with the "supersymmetry"
theory by Efetov and Prigodin of the NMR lineshape in disordered metal
particles. Upon breaking time-reversal symmetry, the variance of the Knight
shift in the smallest particles is reduced by a universal factor of 2/3. ***To
be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017:
figure included in text
Physics in Riemann's mathematical papers
Riemann's mathematical papers contain many ideas that arise from physics, and
some of them are motivated by problems from physics. In fact, it is not easy to
separate Riemann's ideas in mathematics from those in physics. Furthermore,
Riemann's philosophical ideas are often in the background of his work on
science. The aim of this chapter is to give an overview of Riemann's
mathematical results based on physical reasoning or motivated by physics. We
also elaborate on the relation with philosophy. While we discuss some of
Riemann's philosophical points of view, we review some ideas on the same
subjects emitted by Riemann's predecessors, and in particular Greek
philosophers, mainly the pre-socratics and Aristotle. The final version of this
paper will appear in the book: From Riemann to differential geometry and
relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017
Feynman rules for the rational part of the Electroweak 1-loop amplitudes
We present the complete set of Feynman rules producing the rational terms of
kind R_2 needed to perform any 1-loop calculation in the Electroweak Standard
Model. Our results are given both in the 't Hooft-Veltman and in the Four
Dimensional Helicity regularization schemes. We also verified, by using both
the 't Hooft-Feynman gauge and the Background Field Method, a huge set of Ward
identities -up to 4-points- for the complete rational part of the Electroweak
amplitudes. This provides a stringent check of our results and, as a
by-product, an explicit test of the gauge invariance of the Four Dimensional
Helicity regularization scheme in the complete Standard Model at 1-loop. The
formulae presented in this paper provide the last missing piece for completely
automatizing, in the framework of the OPP method, the 1-loop calculations in
the SU(3) X SU(2) X U(1) Standard Model.Comment: Many thanks to Huasheng Shao for having recomputed, independently of
us, all of the effective vertices. Thanks to his help and by
comparing with an independent computation we performed in a general
gauge, we could fix, in the present version, the following formulae: the
vertex in Eq. (3.6), the vertex in Eq. (3.8),
Eqs (3.16), (3.17) and (3.18
Jet vetoing and Herwig++
We investigate the simulation of events with gaps between jets with a veto on
additional radiation in the gap in Herwig++. We discover that the
currently-used random treatment of radiation in the parton shower is generating
some unphysical behaviour for wide-angle gluon emission in QCD 2 to 2
scatterings. We explore this behaviour quantitatively by making the same
assumptions as the parton shower in the analytical calculation. We then modify
the parton shower algorithm in order to correct the simulation of QCD
radiation.Comment: 18 pages, 11 figure
On the breaking of collinear factorization in QCD
We investigate the breakdown of collinear factorization for non-inclusive
observables in hadron-hadron collisions. For pure QCD processes, factorization
is violated at the three-loop level and it has a structure identical to that
encountered previously in the case of super-leading logarithms. In particular,
it is driven by the non-commutation of Coulomb/Glauber gluon exchanges with
other soft exchanges. Beyond QCD, factorization may be violated at the two-loop
level provided that the hard subprocess contains matrix element contributions
with phase differences between different colour topologies.Comment: Version 2: minor improvements for journal publicatio
- …
