12 research outputs found
An American in Japan : William Merrell Vories (Hitotsuyanagi), 1905-1964
論説application/pdfdepartmental bulletin pape
SBML Level 3: an extensible format for the exchange and reuse of biological models
Abstract Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution
SBML Level 3: an extensible format for the exchange and reuse of biological models
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.journal articl
Inhibition of PRIMA-1 mediated transcriptional reactivation function of p53 with pifithrin-α (PFTα)
<p><b>Copyright information:</b></p><p>Taken from "Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells"</p><p>Breast Cancer Research 2005;7(5):R765-R774.</p><p>Published online 27 Jul 2005</p><p>PMCID:PMC1242148.</p><p>Copyright © 2005 Rehman et al.; licensee BioMed Central Ltd.</p> MCF-7 (p53) and GI-101A (mut p53) cells were treated with 100 μM PRIMA-1 for 2, 4 and 8 hours (lanes 1, 2 and 3, respectively). Cells were treated with 20 μM PFTα for 6 hours (lane 4) or with 20 μM PFTα for 2 hours followed by PRIMA-1 for 4 hours (lane 5). 20 μg of protein samples of cell lysates were separated by SDS-PAGE (4 to 20% polyacrylamide) and subjected to Western blot analysis with p53 and p21 primary antibodies. The reactive bands were revealed and detected with the Odyssey™ Infrared Imaging System. β-Actin was used as a loading control for protein samples
Protein-protein interaction analysis of p53 and the α isoform of heat shock protein 90 (Hsp90α)
<p><b>Copyright information:</b></p><p>Taken from "Proteomic identification of heat shock protein 90 as a candidate target for p53 mutation reactivation by PRIMA-1 in breast cancer cells"</p><p>Breast Cancer Research 2005;7(5):R765-R774.</p><p>Published online 27 Jul 2005</p><p>PMCID:PMC1242148.</p><p>Copyright © 2005 Rehman et al.; licensee BioMed Central Ltd.</p> MDA-231 cell lysates from untreated cells (lanes 1 and 3) and cells treated for 4 hours with 100 μM PRIMA-1 (lanes 2 and 4) were immunoprecipitated (IP) with anti-Hsp90α monoclonal antibody and subjected to Western blotting (WB) with anti-p53 (DO-1) monoclonal antibody (lanes 1 and 2) in addition to reciprocal immunoprecipitation with DO-1 and Western blotting with anti-Hsp90α (lanes 3 and 4). GI-101A cell lysates from untreated cells (lanes 1 and 3) and cells treated for 4 hours with 100 μM PRIMA-1 (lanes 2 and 4) were immunoprecipitated with anti-Hsp90α monoclonal antibody and subjected to Western blotting with anti-p53 (DO-1) monoclonal antibody (lanes 1 and 2) in addition to reciprocal immunoprecipitation with DO-1 and Western blotting with anti-Hsp90α (lanes 3 and 4)
