62 research outputs found

    STRATEGI GURU AL-QUR’AN HADITS DALAM MENINGKATKAN SEMANGAT HAFALAN JUZ ‘AMMA SISWA KELAS VIII DI MTsN 1 TULUNGAGUNG

    Get PDF
    ABSTRAK Skripsi dengan judul “ Strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung ” ini ditulis oleh Erik Setiowati, NIM 12201173133. Jurusan Pendidikan Agama Islam (PAI), Fakultas Tarbiyah dan Ilmu Keguruan (FTIK), Institut Agama Islam Negeri (IAIN) Tulungagung, yang dibimbing oleh Prof. Dr. Sokip, S.Ag., M.Pd.I Kata kunci : Strategi guru, semangat, hafalan juz ‘amma Semangat merupakan salah satu aspek yang sangat penting dalam proses menghafal al-Qur’an ( juz ‘amma), karena menghafal al-Qur’an (juz ‘amma) bukanlah suatu hal yang mudah yang bisa dilakukan oleh semua orang. Semangat yang dirasakan oleh setiap peserta didik tentu berbeda dalam menghafal juz ‘amma, ada yang selalu istiqomah semangat ada juga yang naik turun semangatnya. Hal tersebut disebabkan timbulnya rasa malas,lelah dan jenuh dalam diri peserta didik di sela-sela menghafal al-Qur’an ( juz ‘amma ). Itulah yang menjadi tugas seorang guru bagaimana dalam menyiapkan strateginya dalam rangka meningkatkan semangat siswa dalam menghafal juz ‘amma. Proses menghafal akan berjalan lebih maksimal, dengan adanya semangat dalam diri peserta didik. Fokus penelitian dalam skripsi ini adalah (1) Bagaimana perencanaan strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung ?, (2) Bagaimana pelaksanaan strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung ?, (3) Bagaimana evaluasi strategi guru al Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung ?, Adapun yang menjadi tujuan penelitian ini adalah (1) Untuk mengetahui perencanaan strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung, (2) Untuk mengetahui pelaksanaan strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung, (3) Untuk mengetahui evaluasi strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung. Metode penelitian yang digunakan adalah penelitian kualitatif-studi kasus. Dalam pengumpulan data, peneliti menggunakan teknik wawancara, observasi, dan dokumentasi. Sedangkan untuk analisisnya peneliti menggunakan tiga tahapan berupa reduksi data, paparan data, penarikan kesimpulan atau verifikasi. Pengecekan keabsahan data temuan melalui ketekunan pengamatan, triangggulasi, pemeriksaan sejawat. Hasil penelitian ini menunjukkan bahwa: (1) Perencanaan strategi guru al Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung terdapat beberapa rencana diantaranya yaitu : (a) guru mengadakan rapat untuk menyusun strategi dalam meningkatkan semangat siswa dalam menghafal, (b) guru menyusun RPP, (c) guru menentukan metode, (d) guruakan memberikan reward, (2) Pelaksanaan strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MTsN 1 Tulungagung adalah : (a) membentuk siswa ke dalam beberapa kelompok, (b) melakukan kegiatan pembiasaan tadarus al-Qur’an, (c) memberikan motivasi, ( d) menyampaikan materi ilmu tajwid, (e) muraja’ah, (f) setoran hafalan, (3) Evaluasi strategi guru al-Qur’an hadits dalam meningkatkan semangat hafalan juz ‘amma siswa kelas viii di MtsN 1 Tulungagung yaitu dengan melihat adanya hambatan yang di alami siswa pada saat proses pembelajaran berlangsung, hambatan yang dialami siswa terdapat dua faktor yaitu faktor internal dan faktor eksternal (a) faktor internal meliputi kurang fokusnya siswa dalam mengikuti pembelajaran, muncul rasa malas, lelah dan jenuh (b) faktor eksternal meliputi faktor dari keluarga, teman, dan lingkugan sekitar

    A Consideration about the Environmental Radiation Monitoring around the Fukushima Prefecture

    Get PDF
    環境放射線モニタリングの目的は、最終的には「線量評価」を通じて人の放射線安全を確保・確認することにある。平成23 年3 月11 日の東日本大震災・津波を引き金として発生した福島第一原発事故では、それまでの約55 年間の我国国内全体のモニタリング実施数をはるかに凌駕するような規模のモニタリングが実施され、初頭に述べた目的に向けて評価等が進められたが、中には今後に活かすべき知見や教訓も多数あると思われる。ここでは、これら福島県を中心に行われたモニタリングやその結果、それらから導かれた線量評価結果とその見方について、考察を加え、意見、考え方を述べる。departmental bulletin pape

    質量分離と化学分離を用いた質量数150近傍の核分裂生成物の核分光

    Get PDF
    名古屋大学Nagoya University博士(工学)名古屋大学博士学位論文 学位の種類:博士(工学) (課程) 学位授与年月日:平成6年3月2日doctoral thesi

    Development of the 1.5 GHz TM020-type Harmonic Cavity for Future Synchrotron Light Sources

    Get PDF
    総合研究大学院大学博士(理学)application/pdf総研大甲第2398号doctoral thesi

    Study on Email Spam Classification Using Machine Learning Techniques

    Get PDF
    Email has become essential communication tool for a number of users all over the world. However, increasing volume of spam or unsolicited bulk emails causes serious problem for Internet services and Internet users. So, it is necessary to filter spam emails. This paper proposes two machine learning approaches for email classification based on email body. Naïve Bayes Classifier and Hidden Markov Model have been used for detecting a spam or ham email. Naïve Bayes Classifier considers independent words as a feature while Hidden Markov Model provides us with the distributions over the sequence of observations. Finally, both algorithms are compared to find which is more effective and can give higher accuracy.departmental bulletin pape

    これからの社会とそこに生きる自分を構想する生徒の育成(第57回(平成24年度)公開研究発表会 社会科発表要項)

    Get PDF
    text紀要論文 / Departmental Bulletin Paperdepartmental bulletin pape

    Fast Retinex Image Enhancement Using CUDA

    Get PDF
    Image enhancement is an important preliminary step in many digital image processing and applications and Retinex algorithm is one of the commonly used algorithm to enhance the image with uneven illumination condition. But the computation of the Retinex is a very complex and time-consuming process. Therefore, we implement the fast Retinex image enhancement algorithm using the CUDA (Compute Unified Device Architecture). Our experiments show that we can gain 46× speed-up for image size 4,096 × 4,096 compared with the OpenCV CPU program.departmental bulletin pape

    AI-enhanced real-time cattle identification system through tracking across various environments

    Get PDF
    Video-based monitoring is essential nowadays in cattle farm management systems for automated evaluation of cow health, encompassing body condition scores, lameness detection, calving events, and other factors. In order to efficiently monitor the well-being of each individual animal, it is vital to automatically identify them in real time. Although there are various techniques available for cattle identification, a significant number of them depend on radio frequency or visible ear tags, which are prone to being lost or damaged. This can result in financial difficulties for farmers. Therefore, this paper presents a novel method for tracking and identifying the cattle with an RGB image-based camera. As a first step, to detect the cattle in the video, we employ the YOLOv8 (You Only Look Once) model. The sample data contains the raw video that was recorded with the cameras that were installed at above from the designated lane used by cattle after the milk production process and above from the rotating milking parlor. As a second step, the detected cattle are continuously tracked and assigned unique local IDs. The tracked images of each individual cattle are then stored in individual folders according to their respective IDs, facilitating the identification process. The images of each folder will be the features which are extracted using a feature extractor called VGG (Visual Geometry Group). After feature extraction task, as a final step, the SVM (Support Vector Machine) identifier for cattle identification will be used to get the identified ID of the cattle. The final ID of a cattle is determined based on the maximum identified output ID from the tracked images of that particular animal. The outcomes of this paper will act as proof of the concept for the use of combining VGG features with SVM is an effective and promising approach for an automatic cattle identification systemCitation: Su Larb Mon, Tsubasa Onizuka, Pyke Tin, Masaru Aikawa, Ikuo Kobayashi, Thi Thi Zin, AI-enhanced real-time cattle identification system through tracking across various environments, Scientific Reports, 14(1), 2024-08-01, https://doi.org/10.1038/s41598-024-68418-

    Development of a real-time cattle lameness detection system using a single side-view camera

    Get PDF
    Recent advancements in machine learning and deep learning have revolutionized various computer vision applications, including object detection, tracking, and classification. This research investigates the application of deep learning for cattle lameness detection in dairy farming. Our study employs image processing techniques and deep learning methods for cattle detection, tracking, and lameness classification. We utilize two powerful object detection algorithms: Mask-RCNN from Detectron2 and the popular YOLOv8. Their performance is compared to identify the most effective approach for this application. Bounding boxes are drawn around detected cattle to assign unique local IDs, enabling individual tracking and isolation throughout the video sequence. Additionally, mask regions generated by the chosen detection algorithm provide valuable data for feature extraction, which is crucial for subsequent lameness classification. The extracted cattle mask region values serve as the basis for feature extraction, capturing relevant information indicative of lameness. These features, combined with the local IDs assigned during tracking, are used to compute a lameness score for each cattle. We explore the efficacy of various established machine learning algorithms, such as Support Vector Machines (SVM), AdaBoost and so on, in analyzing the extracted lameness features. Evaluation of the proposed system was conducted across three key domains: detection, tracking, and lameness classification. Notably, the detection module employing Detectron2 achieved an impressive accuracy of 98.98%. Similarly, the tracking module attained a high accuracy of 99.50%. In lameness classification, AdaBoost emerged as the most effective algorithm, yielding the highest overall average accuracy (77.9%). Other established machine learning algorithms, including Decision Trees (DT), Support Vector Machines (SVM), and Random Forests, also demonstrated promising performance (DT: 75.32%, SVM: 75.20%, Random Forest: 74.9%). The presented approach demonstrates the successful implementation for cattle lameness detection. The proposed system has the potential to revolutionize dairy farm management by enabling early lameness detection and facilitating effective monitoring of cattle health. Our findings contribute valuable insights into the application of advanced computer vision methods for livestock health management.Citation: Bo Bo Myint, Tsubasa Onizuka, Pyke Tin, Masaru Aikawa, Ikuo Kobayashi, Thi Thi Zin, Development of a real-time cattle lameness detection system using a single side-view camera, Scientific Reports, 14(1), 2024-06-14, https://doi.org/10.1038/s41598-024-64664-

    Revolutionizing Cow Welfare Monitoring: A Novel Top-View Perspective with Depth Camera-Based Lameness Classification

    Get PDF
    This study innovates livestock health management, utilizing a top-view depth camera for accurate cow lameness detection, classification, and precise segmentation through integration with a 3D depth camera and deep learning, distinguishing it from 2D systems. It underscores the importance of early lameness detection in cattle and focuses on extracting depth data from the cow’s body, with a specific emphasis on the back region’s maximum value. Precise cow detection and tracking are achieved through the Detectron2 framework and Intersection Over Union (IOU) techniques. Across a three-day testing period, with observations conducted twice daily with varying cow populations (ranging from 56 to 64 cows per day), the study consistently achieves an impressive average detection accuracy of 99.94%. Tracking accuracy remains at 99.92% over the same observation period. Subsequently, the research extracts the cow’s depth region using binary mask images derived from detection results and original depth images. Feature extraction generates a feature vector based on maximum height measurements from the cow’s backbone area. This feature vector is utilized for classification, evaluating three classifiers: Random Forest (RF), K-Nearest Neighbor (KNN), and Decision Tree (DT). The study highlights the potential of top-view depth video cameras for accurate cow lameness detection and classification, with significant implications for livestock health management.Citation: Tun, S.C.; Onizuka, T.; Tin, P.; Aikawa, M.; Kobayashi, I.; Zin, T.T. Revolutionizing Cow Welfare Monitoring: A Novel Top-View Perspective with Depth Camera-Based Lameness Classification. J. Imaging 2024, 10, 67. https://doi.org/10.3390/jimaging1003006
    corecore