18 research outputs found

    Complexity reduction using QRD-M or SD in MIMO Interleaved SC-FDMA receiver with iterative detection

    Get PDF
    application/pdfHonolulu, Hawaii, USA, 28-31 October 2012conference pape

    Production cross sections of light and charmed mesons in e+e- annihilation near 10.58 GeV

    Get PDF
    We report measurements of production cross sections for +, 0, , *+, *0, , , 0, 0⁡(980), +, 0, +, *+, *0, and *+ in +⁢− collisions at a center-of-mass energy near 10.58 GeV. The data were recorded by the Belle experiment, consisting of 571  fb−1 at 10.58 GeV and 74  fb−1 at 10.52 GeV. Production cross sections are extracted as a function of the fractional hadron momentum . The measurements are compared to pythia Monte Carlo generator predictions with various fragmentation settings, including those that have increased fragmentation into vector mesons over pseudoscalar mesons. The cross sections measured for light hadrons are consistent with no additional increase of vector over pseudoscalar mesons. The charmed-meson cross sections are compared to earlier measurements—when available—including older Belle results, which they supersede. They are in agreement before application of an improved initial-state radiation correction procedure that causes slight changes in their shapes.Authors: R. Seidl, I. Adachi, H. Aihara, T. Aushev, R. Ayad, Sw. Banerjee, K. Belous, J. Bennett, M. Bessner, B. Bhuyan, D. Biswas, D. Bodrov, M. Bračko, P. Branchini, T. E. Browder, A. Budano, M. Campajola, K. Chilikin, K. Cho, S.-K. Choi, Y. Choi, S. Choudhury, S. Das, G. De Nardo, G. De Pietro, F. Di Capua, J. Dingfelder, Z. Doležal, T. V. Dong, D. Dossett, P. Ecker, T. Ferber, B. G. Fulsom, V. Gaur, A. Giri, P. Goldenzweig, E. Graziani, Y. Guan, K. Gudkova, C. Hadjivasiliou, T. Hara, H. Hayashii, D. Herrmann, W.-S. Hou, C.-L. Hsu, K. Inami, N. Ipsita, A. Ishikawa, R. Itoh, M. Iwasaki, W. W. Jacobs, S. Jia, Y. Jin, K. K. Joo, A. B. Kaliyar, C. Kiesling, C. H. Kim, D. Y. Kim, K.-H. Kim, P. Kodyš, A. Korobov, S. Korpar, P. Križan, P. Krokovny, D. Kumar, K. Kumara, Y.-J. Kwon, T. Lam, L. K. Li, Y. B. Li, L. Li Gioi, J. Libby, D. Liventsev, Y. Ma, M. Masuda, T. Matsuda, D. Matvienko, M. Merola, K. Miyabayashi, R. Mussa, M. Nakao, A. Natochii, M. Niiyama, S. Nishida, S. Ogawa, H. Ono, G. Pakhlova, S. Pardi, J. Park, S.-H. Park, A. Passeri, S. Patra, S. Paul, T. K. Pedlar, R. Pestotnik, L. E. Piilonen, T. Podobnik, E. Prencipe, M. T. Prim, G. Russo, S. Sandilya, L. Santelj, V. Savinov, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, M. E. Sevior, W. Shan, J.-G. Shiu, B. Shwartz, J. B. Singh, E. Solovieva, M. Starič, M. Sumihama, M. Takizawa, K. Tanida, F. Tenchini, T. Uglov, Y. Unno, S. Uno, Y. Usov, C. Van Hulse, A. Vinokurova, A. Vossen, M.-Z. Wang, B. D. Yabsley, W. Yan, Y. Yook, C. Z. Yuan, L. Yuan, Z. P. Zhang, and V. Zhilich (Belle Collaboration

    Search for hb (2P) →γχbJ (1P) at s =10.860 GeV

    Get PDF
    In the bottomonium sector, the hindered magnetic dipole transitions between P-wave states ℎ⁡(2⁢)→⁢⁡(1⁢)⁢, =0, 1, 2, are expected to be severely suppressed according to the relativized quark model, due to the spin flip of the quark. Nevertheless, a recent model following the coupled-channel approach predicts the corresponding branching fractions to be enhanced by orders of magnitude. In this Letter, we report the first search for such transitions. We find no significant signals and set upper limits at 90% confidence level on the corresponding branching fractions: ℬ⁡[ℎ⁡(2⁢)→⁢⁢0⁡(1⁢)]<2.7×10−1, ℬ⁡[ℎ⁡(2⁢)→⁢⁢1⁡(1⁢)]<5.4×10−3 and ℬ⁡[ℎ⁡(2⁢)→⁢⁢2⁡(1⁢)]<1.3×10−2. These values help to constrain the parameters of the coupled-channel models. The results are obtained using a 121.4  fb−1 data sample taken around √ =10.860  GeV with the Belle detector at the KEKB asymmetric-energy +⁢− collider.Authors: A. Boschetti, R. Mussa, U. Tamponi, I. Adachi, H. Aihara, D. M. Asner, T. Aushev, R. Ayad, Sw. Banerjee, K. Belous, J. Bennett, M. Bessner, D. Biswas, A. Bobrov, D. Bodrov, A. Bozek, M. Bračko, P. Branchini, T. E. Browder, A. Budano, M.-C. Chang, B. G. Cheon, K. Chilikin, K. Cho, S.-K. Choi, Y. Choi, S. Choudhury, G. De Nardo, G. De Pietro, R. Dhamija, F. Di Capua, Z. Doležal, T. V. Dong, P. Ecker, D. Epifanov, D. Ferlewicz, B. G. Fulsom, R. Garg, V. Gaur, A. Garmash, A. Giri, P. Goldenzweig, E. Graziani, T. Gu, Y. Guan, K. Gudkova, C. Hadjivasiliou, T. Hara, K. Hayasaka, H. Hayashii, S. Hazra, W.-S. Hou, C.-L. Hsu, K. Inami, N. Ipsita, R. Itoh, M. Iwasaki, W. W. Jacobs, Y. Jin, T. Kawasaki, C. Kiesling, C. H. Kim, D. Y. Kim, K.-H. Kim, Y.-K. Kim, K. Kinoshita, P. Kodyš, S. Korpar, E. Kovalenko, P. Križan, P. Krokovny, R. Kumar, K. Kumara, Y.-J. Kwon, T. Lam, D. Levit, L. K. Li, Y. B. Li, L. Li Gioi, D. Liventsev, Y. Ma, M. Masuda, T. Matsuda, D. Matvienko, F. Meier, M. Merola, K. Miyabayashi, R. Mizuk, G. B. Mohanty, M. Nakao, Z. Natkaniec, A. Natochii, L. Nayak, M. Nayak, S. Nishida, S. Ogawa, H. Ono, G. Pakhlova, J. Park, S.-H. Park, A. Passeri, S. Patra, S. Paul, T. K. Pedlar, R. Pestotnik, L. E. Piilonen, T. Podobnik, E. Prencipe, M. T. Prim, N. Rout, G. Russo, S. Sandilya, L. Santelj, V. Savinov, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, W. Shan, C. P. Shen, J.-G. Shiu, A. Sokolov, E. Solovieva, M. Starič, M. Sumihama, M. Takizawa, K. Tanida, F. Tenchini, R. Tiwary, M. Uchida, Y. Unno, S. Uno, A. Vinokurova, E. Wang, M.-Z. Wang, X. L. Wang, E. Won, B. D. Yabsley, J. Yelton, J. H. Yin, Y. Yook, and L. Yuan (Belle Collaboration

    Observation of B0→D*-(5π)+, B+→D*-(4π)++ and B+→D̅*0 (5π)+

    Get PDF
    journal articl

    The aNOP10 3D structure in aCBF5–aNOP10 crystals () Ribbon representation

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Crystal structure determination and site-directed mutagenesis of the aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity"</p><p>Nucleic Acids Research 2006;34(3):826-839.</p><p>Published online 2 Feb 2006</p><p>PMCID:PMC1361308.</p><p>© The Author 2006. Published by Oxford University Press. All rights reserved</p> The Zn ion detected in the crystal structure is represented by a red ball. The arrow indicates the position of the C-terminal end truncation in the aNOP10-Nt variant protein produced in this study (see ). () Close-up view of the 2Fo-Fc electron density map (blue), contoured at 1.2 σ, in the region of the zinc-binding domain. The zinc atom is drawn in red. The simulated annealing omitted Fo-Fc map (green) of the zinc ion is contoured at 5 σ. () Sequence alignments of archaeal aNOP10 proteins. Residues involved in the side-chain interactions between proteins aNOP10 and aCBF5 and in the aNOP10 homodimerization are indicated by white and black diamonds, respectively. Sequences are retrieved from the SWISS-PROT database. ( and ) Ribbon representation of the two distinct aCBF5–aNOP10 heterotetramers formed by aNOP10 dimerization and found in the crystal

    The aCBF5 structure in aCBF5–aNOP10 crystals and its comparison with the and TruB 3D structure (TruB and TruB, respectively) () Ribbon representation of the established aCBF5 structure

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Crystal structure determination and site-directed mutagenesis of the aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity"</p><p>Nucleic Acids Research 2006;34(3):826-839.</p><p>Published online 2 Feb 2006</p><p>PMCID:PMC1361308.</p><p>© The Author 2006. Published by Oxford University Press. All rights reserved</p> The position of the C-terminal extremity (249) of the variant aCBF5 protein aCBF5ΔPUA produced in this study is represented (see ). The N-terminal extension is drawn in yellow. () Superimposition of the aCBF5 3D structure (green) with that of the free TruB (blue) (). () Superimposition of the aCBF5 3D structure (green) with that of the RNA-bounded TruB (red) (). Note that aCBF5 is oriented differently (rotation by 90°) in (B) and (C). () Superposition of the catalytic residues of protein aCBF5 (green) with the corresponding residues from the RNA-free TruB protein (blue) () and the RNA-associated TruB protein (red) (). The aCBF5 amino acids numbering is used. The position identified for 5-fluoro-6-hydroxypseudouridine (5FhΨ) after catalysis by the TruB protein is indicated ()

    Interface between proteins aNOP10 and aCBF5 in the crystal () Ribbon representation of the aCBF5–aNOP10 heterodimer and () molecular surface of the aNOP10 (orange) and aCBF5 (green) surface in the crystal

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Crystal structure determination and site-directed mutagenesis of the aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity"</p><p>Nucleic Acids Research 2006;34(3):826-839.</p><p>Published online 2 Feb 2006</p><p>PMCID:PMC1361308.</p><p>© The Author 2006. Published by Oxford University Press. All rights reserved</p> (C, D) Hydrophobic (gray), acidic (red) and basic (blue) residues at the aCBF5–aNOP10 interfaces are represented in aCBF5 () and aNOP10 (). () Calculated electrostatic potential for the aCBF5–aNOP10 complex mapped on its molecular surface. Positive and negative potential are drawn in blue and red, respectively. () Ribbon representation of the aCBF5–aNOP10 complex in the same orientation as in (E). Views in (A–C) have the same orientation; view in (D) is rotated by 180° and the aCBF5–aNOP10 structure in (E and F) is rotated by 90°

    伝送路の状態を考慮したマルチキャリヤ伝送用回線制御方式

    Get PDF
    マルチキャリヤ信号のサブキャリヤから伝送路の状態を比較的容易に推定できることに着目し、これを利用して伝送品質を向上させるマルチキャリヤ伝送用の回線制御方式を提案する。提案方式では、受信電力が小さく伝送品質が劣化していると予想されるサブキャリヤにはデータを割り当てずにダミーキャリヤとして送信し、受信電力が大きく伝送品質が良好であると予想されるサブキャリヤのみにデータを割り当てて伝送する。移動通信環境を想定した性能評価の結果、すべてのサブキャリヤにデータを割り当てる通常のマルチキャリヤ伝送方式に比べ、受信レベルの低いサブキャリヤをダミーキャリヤとしてデータを割り当てない提案方式のほうが、伝送効率が向上することを示す。更に提案方式における誤り訂正符号の効果を明らかにする。journal articl

    Depiction of Time-dependent Calibration Curve for y-Ray Irradiater Using Radiophotoluminescence and ESR Dosimetry

    Get PDF
    Time-dependent calibration curve for the γ-ray irradiator was prepared using radiophoto -luminescence (RDPL) and ESR dosimetry. In RDPL measurement, the radiation dose was linearly increased until 38 Gy. However, above 38 Gy, it deviated upward. The ESR signal intensity of γ-irradiated L-α-alanine indicated linear in the range from 0 to 500 Gy. Though ESR signal intensity of L-α-alanine was saturated with the microwave power, the linearity of the calibration curve was reserved at any microwave power (< 5 mW). Summarizing these results, the time-dependent calibration curve was obtained using γ-irradiated L-α-alanine in the range of 0 - 500 Gy after correction by RDPL for the radiation dose below 38 Gy.departmental bulletin pape

    Model of how a reduction in the hydrophobicity of subunit 9 permits its functional expression from nuclear DNA.

    No full text
    <p>When the hydrophobicity of subunit 9 is too high, the protein cannot cross the inner mitochondrial membrane (IM) and is degraded in the intermembrane space by the i-AAA protease. With reduced hydrophobicity, subunit 9 can cross the IM and is processed by the matrix processing peptidase (MPP), properly inserted into the IM, and assembled into ATP synthase (see text for details). OM, outer mitochondrial membrane; MTS, mitochondrial targeting sequence, TMH, transmembrane segment; TOM, translocase of the OM; TIM, translocase of the IM.</p
    corecore