9 research outputs found

    Subsistence Whaling of the Chukotkan Indigenous Peoples

    Get PDF
    departmental bulletin pape

    ゲンチョ トウ キョウシツ ニオケル フニンショウ ニ カンスル トウケイテキ コウサツ

    Get PDF
    本学付属病院産婦人科診療を開始した昭和58年10月より昭和61年8月までの約3年間に,当科外来を受診した不妊症患者234名のうち,系統的検査並びに治療を施行した152名について臨床統計的観察を行い,次の成績を得た。(1) 全外来患者中,不妊症患者は5.4%あり,不妊症患者152名中,原発性不妊は63.8%,続発性不妊は36.2%であった。(2) 初診時年齢は27~30歳にピークがあり,原発性及び続発性の平均年齢(平均値±標準偏差,例数)はそれぞれ29.9±3.7歳,(97例)及び,31.0士3.7歳,(55例)で,両者間に有意差はなかった。(3) 初診時不妊期間は4年未満が多く,原発性では1~2年にピークを認めた。(4) 一定の基準を設定し,不妊原因を分類した結果,原因としては排卵因子(37.5%)が最も多く,男性因子(17.8%),子宮内膜症(9.2%),卵管因子(6.6%)の順であった。(5) 妊娠率は30.3%であり,一応満足の行く成績であった。原因別にみると,排卵因子及び原因不明の頻度はそれぞれ35.1及び52.0%と高く,卵管因子及び男性因子はそれぞれ20.0及び18.5%で低率であった。今後,治療成績を向上させるためには卵管因子及び男性因子に対する新しい治療法導入の必要性が再確認された。journal articl

    Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production

    Full text link
    "This is the peer reviewed version of the following article: Fornes, Fernando, Rosa M Belda, Pascual Fernández de Córdova, and Jaime Cebolla-Cornejo. 2017. Assessment of Biochar and Hydrochar as Minor to Major Constituents of Growing Media for Containerized Tomato Production. Journal of the Science of Food and Agriculture 97 (11). Wiley: 3675 84. doi:10.1002/jsfa.8227, which has been published in final form at https://doi.org/10.1002/jsfa.8227. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] BACKGROUND: Chars are emerging materials as constituents of growth media. However, chars of different origin differ in their characteristics and more studies are needed to ratify them for such a role. The characteristics of coir mixed with 0%, 10%, 25%, 50%, 75%, and 100% (v/v) of two biochars, from forest waste (BCH-FW) and from olive mill waste (BCH-OMW), and one hydrochar, from forest waste (HYD-FW), and their effects on growth, yield and fruit quality of two tomato cultivars (Gransol RZ and Cuarenteno) were assessed. RESULTS: Chars negatively affected plant growth and yield but not fruit quality. The effect was related to the char dose and was larger in HYD-FW and BCH-FW than in BCH-OMW, despite the high salinity of the latter, and more acute in Cuarenteno than in Gransol RZ. The results were discussed on the basis of the large particle size of BCH-FW, which could have caused low nutrient solution retention and, hence, reduced plant nutrient uptake, and the highwater-holding capacity, poor aeration and large CO2 emission of HYD-FW, which could lead to root anoxia. CONCLUSION: BCH-OMW can be used at high proportion in media for tomato cultivation. The use of BCH-FW at a high proportion might be taken into consideration after adjusting particle size, yet this needs additional assays. HYD-FW is inadequate for soilless containerized tomato cultivation. (C) 2017 Society of Chemical IndustryThis study was funded by the Universitat Politecnica de Valencia (Proyectos de nuevas Lineas de Investigacion Multidisciplinares; PAID-05-12).Fornes Sebastiá, F.; Belda Navarro, RM.; Fernández De Córdova Martínez, PJ.; Cebolla Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture. 97(11):3675-3684. https://doi.org/10.1002/jsfa.8227S367536849711Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers, 8(6), 58. doi:10.3390/cancers8060058Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews, 7(2), 231-250. doi:10.1007/s11101-007-9085-xSchmilewski, G. (2009). GROWING MEDIUM CONSTITUENTS USED IN THE EU. Acta Horticulturae, (819), 33-46. doi:10.17660/actahortic.2009.819.3Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496. doi:10.1007/s11104-010-0544-6Dumroese, R. K., Heiskanen, J., Englund, K., & Tervahauta, A. (2011). Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy, 35(5), 2018-2027. doi:10.1016/j.biombioe.2011.01.053Vaughn, S. F., Kenar, J. A., Thompson, A. R., & Peterson, S. C. (2013). Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products, 51, 437-443. doi:10.1016/j.indcrop.2013.10.010Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747. doi:10.1071/cp14247Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., … Emmerich, K.-H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71-106. doi:10.4155/bfs.10.81Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41(2), 210-219. doi:10.1016/j.soilbio.2008.10.016Bargmann, I., Martens, R., Rillig, M. C., Kruse, A., & Kücke, M. (2013). Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 177(1), 59-67. doi:10.1002/jpln.201300154Bargmann, I., Rillig, M. C., Buss, W., Kruse, A., & Kuecke, M. (2013). Hydrochar and Biochar Effects on Germination of Spring Barley. Journal of Agronomy and Crop Science, 199(5), 360-373. doi:10.1111/jac.12024Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44. doi:10.1016/j.agwat.2014.02.016Vaccari, F. ., Maienza, A., Miglietta, F., Baronti, S., Di Lonardo, S., Giagnoni, L., … Genesio, L. (2015). Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems & Environment, 207, 163-170. doi:10.1016/j.agee.2015.04.015Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640Cebolla-Cornejo, J., Roselló, S., Valcárcel, M., Serrano, E., Beltrán, J., & Nuez, F. (2011). Evaluation of Genotype and Environment Effects on Taste and Aroma Flavor Components of Spanish Fresh Tomato Varieties. Journal of Agricultural and Food Chemistry, 59(6), 2440-2450. doi:10.1021/jf1045427Dunlop, S. J., Arbestain, M. C., Bishop, P. A., & Wargent, J. J. (2015). Closing the Loop: Use of Biochar Produced from Tomato Crop Green waste as a Substrate for Soilless, Hydroponic Tomato Production. HortScience, 50(10), 1572-1581. doi:10.21273/hortsci.50.10.1572Bunt, A. C. (1988). Media and Mixes for Container-Grown Plants. doi:10.1007/978-94-011-7904-1Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193-194, 122-130. doi:10.1016/j.geoderma.2012.10.002Schulz, H., & Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science, 175(3), 410-422. doi:10.1002/jpln.201100143Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.01

    Improved measurements of the branching fractions for B→Kπ, ππ, and KK̅ decays

    Get PDF
    journal articl

    Web ページ ノ テキスト セグメント カイソウ コウゾウ ノ チュウシュツ

    Get PDF
    奈良先端科学技術大学院大学修士(工学)master thesi

    An analysis reflections between users and home caregivers

    Get PDF
    departmental bulletin pape
    corecore