6 research outputs found

    Form–vessel classification of cholangioscopy findings for the diagnosis of superficial spread of biliary tract carcinoma

    Get PDF
    University of Yamanashi (山梨大学)博士(医学)医工博4甲第265号thesi

    Improved Search for νμ→νe Oscillation in a Long-Baseline Accelerator Experiment

    Get PDF
    journal articl

    Design on Metallurgical Works of Yoshioka Mine(吉岡鉱山冶金計画)

    No full text
    東京帝国大学工科大学種別:卒業論文thesi

    清弁著『智恵のともしび』第II章和訳・解説(II)

    No full text
    1983-03departmental bulletin pape

    The Second Messenger Phosphatidylinositol-5-Phosphate Facilitates Antiviral Innate Immune Signaling

    Get PDF
    Innate immune receptors, notably Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), sense viral infection and activate transcription factors, including interferon regulatory factor-3 (IRF3), to induce type I interferon (IFN). We demonstrate that the lipid phosphatidylinositol-5-phosphate (PtdIns5P) is increased upon viral infection and facilitates type I IFN production by binding to IRF3 and its upstream kinase TBK1 and promoting TBK1-mediated IRF3 phosphorylation and activation. Additionally, we determine that PtdIns5P is produced through the kinase PIKfyve, which phosphorylates PtdIns to generate PtdIns5P. Accordingly, PIKfyve knockdown or pharamoclogical inhibition decreases PtdIns5P levels and type I IFN production after TLR or RLR stimulation, and results in increased viral replication. A synthetic PtdIns5P, C8-PtdIns5P, promotes IRF3 phosphorylation and cytokine production in dendritic cells and acts as an adjuvant to boost immune responses in immunized mice. Thus, PtdIns5P produced during viral infection is a second messenger that targets the TBK1-IRF3 axis to elicit antiviral immunity.journal articl

    Analysis of IFT74 as a candidate gene for chromosome 9p-linked ALS-FTD.

    No full text
    BACKGROUND: A new locus for amyotrophic lateral sclerosis--frontotemporal dementia (ALS-FTD) has recently been ascribed to chromosome 9p. METHODS: We identified chromosome 9p segregating haplotypes within two families with ALS-FTD (F476 and F2) and undertook mutational screening of candidate genes within this locus. RESULTS: Candidate gene sequencing at this locus revealed the presence of a disease segregating stop mutation (Q342X) in the intraflagellar transport 74 (IFT74) gene in family 476 (F476), but no mutation was detected within IFT74 in family 2 (F2). While neither family was sufficiently informative to definitively implicate or exclude IFT74 mutations as a cause of chromosome 9-linked ALS-FTD, the nature of the mutation observed within F476 (predicted to truncate the protein by 258 amino acids) led us to sequence the open reading frame of this gene in a large number of ALS and FTD cases (n = 420). An additional sequence variant (G58D) was found in a case of sporadic semantic dementia. I55L sequence variants were found in three other unrelated affected individuals, but this was also found in a single individual among 800 Human Diversity Gene Panel samples. CONCLUSION: Confirmation of the pathogenicity of IFT74 sequence variants will require screening of other chromosome 9p-linked families.</p
    corecore