15 research outputs found

    A combined treatment with progesterone, anti-inhibin serum, and equine chorionic gonadotropin improves number of ovulated oocytes in young C57BL/6J mice

    Get PDF
    Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.journal articl

    Zinc transporter ZnT3/Slc30a3 has a potential role in zinc ion influx in mouse oocytes

    Get PDF
    Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.journal articl

    Improved Search for νμ→νe Oscillation in a Long-Baseline Accelerator Experiment

    Get PDF
    journal articl

    帯江鑛山計画

    No full text
    東京帝国大学工科大学種別:卒業論文thesi

    3次元アクティブグリッドを用いた網膜の光干渉断層画像からの自動境界抽出法

    Get PDF
    application/pdf三重大学大学院工学研究科博士前期課程電気電子工学専攻45thesi

    cana

    No full text
    Packera cana (Hooker) W.A. Weber & Á. Lövewoolly groundselséneçon blanchâtrePackera canaMilk River Valley; Gold Spring Municipal Park, 1.5 km SE of Milk River townDry Mixed Grassland: prairie incised river valley - dry meadow3325 feetBouteloua, Stipa, Hedysaru

    Developmental curve of bilateral transfer in mirror-tracing

    No full text
    1982-03Bilateral transfer in the mirror-tracing was examined for six groups ranging in age from 4 to 9 yrs. Each group consisted of 20 subjects. Subjects traced the patterns twice with their nonpreferred hand (pretest) and were divided into matched groups on the basis of the time requied for finishing the second trial. They were tested again with nonpreferred hand for 4 trials (posttest). Between pre-and posttest 8 trials with preferred hand were inserted in the experimental group, while 10-min. rest was given in the control group. By comparing the first trial of the posttest between the two groups, the positive transfer effect was observed for all age groups. The amount of transfer obtained by the Murdock's formula was 50.3, 51.7, 57.3, 46.2, 29.8, 24.5 from 4-yr.-old through 9-yr.-old groups, respectively. To sketch a developmental curve over wider range of age, the data were combined with those of the previous experiment. The curve showed the peak at 6 yrs. of age and then reduced to 14 yrs. with a constantly kept level thereafter.departmental bulletin pape

    Calcium signalling mediates self-incompatibility response in the Brassicaceae

    Get PDF
    ARC1 is known to interact with, and is phosphorylated by, the kinase domain of SRK in Brassica napus9,10. ARC1 is a U-box protein with E3 ubiquitin ligase activity11, and interacts with Exo70A112, a putative component of the exocyst complex, which generally functions in polarized secretion13. These results suggested a model in which activated SRK phosphorylates ARC1, leading to the preclusion of as-yet unknown ‘compatibility factors’ secretion to the stigmatic surface and inhibiting pollen entrance14. However, the suppression of ARC1 expression results in incomplete breakdown of self-incompatibility in both B. napus and Arabidopsis lyrata10,14, and self-compatible Arabidopsis thaliana that lacks ARC1 acquires the self-incompatibility phenotype by introducing SRK and SP11/SCR genes15. Therefore, the extent ARC1 to which is involved in the signalling pathway downstream of SRK remains unclear8,16,17.In this study, we focused on investigating the cytoplasmic Ca2+ dynamics in stigma papilla cells during the self-incompatibility response. A previous study injected dyes to monitor Ca2+ dynamics in the self-incompatibility response18. By combining the in vivo imaging using genetically encoded [Ca2+]cyt probes and pharmacological approaches, we found that cytoplasmic Ca2+ drastically increases in the papilla cells after self-pollination, which can be efficiently blocked by the inhibitors of glutamate receptor channels that mediate the influx of extracellular Ca2+. Pretreatment of papilla cells with glutamate receptor channel inhibitor compromised the self-incompatibility response in vivo, whereas an artificial increase in [Ca2+]cyt in papilla cells induced arrest of pollen hydration to compatible pollen. The [Ca2+]cyt increase in papilla cells during the self-incompatibility response of GLR mutants was significantly reduced. Our results overall strongly suggest that the Ca2+ influx in papilla cells mediated by GLR is the key self-incompatibility response that leads to self-pollen rejection.Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca2+ influx into stigma papilla cells mediates self-incompatibility signalling. Using self-incompatible Arabidopsis thaliana expressing SP11/SCR and SRK, we found that self-pollination specifically induced an increase in cytoplasmic Ca2+ ([Ca2+]cyt) in papilla cells. Direct application of SP11/SCR to the papilla cell protoplasts induced Ca2+ increase, which was inhibited by D-(?)-2-amino-5-phosphonopentanoic acid (AP-5), a glutamate receptor channel blocker. An artificial increase in [Ca2+]cyt in papilla cells arrested wild-type (WT) pollen hydration. Treatment of papilla cells with AP-5 interfered with self-incompatibility, and Ca2+ increase on the self-incompatibility response was reduced in the glutamate receptor-like channel (GLR) gene mutants. These results suggest that Ca2+ influx mediated by GLR is the essential self-incompatibility response leading to self-pollen rejection.Flowering plants have developed self-incompatibility as a genetic system to prevent inbreeding and thus promote outcrossing. In many species, self-incompatibility is controlled by an S locus with multiple haplotypes1. Each S-haplotype encodes both male- and female-specificity determinants (S-determinants), and self/non-self-discrimination is accomplished by the S-haplotype-specific interaction between these S-determinants.In the Brassicaceae, the male and female S-determinants have been identified as SP11/SCR and SRK, respectively1. SP11/SCR is a polymorphic small peptide secreted from the anther tapetum that localizes to the pollen surface, whereas SRK is a polymorphic Ser/Thr receptor kinase that localizes to the plasma membrane of stigma papilla cells. SP11/SCR and SRK from each S-haplotype function respectively as a ligand and its cognate receptor. Upon self-pollination, the S-haplotype-specific interaction between SP11/SCR and SRK induces autophosphorylation of SRK, which is thought to trigger a signalling cascade in the papilla cells, resulting in the rejection of self-pollen2. Although self-pollination is known to evoke multiple physiological changes in the papilla cells, including disruption of actin bundles, fragmentation of vacuolar structure and modification of microtubules3,4, the signalling pathway downstream of SRK that leads to these processes remains largely unknown.Thus far, two candidate molecules, M-locus protein kinase (MLPK) and Arm-repeat containing 1 (ARC1), have been identified as the direct downstream effectors of SRK. MLPK was identified as a gene responsible for a self-compatibility mutation in Brassica rapa5, and encodes a membrane-anchored cytoplasmic protein kinase that interacts with SRK on the papilla cell membrane6. Recent studies have suggested that MLPK is also involved in intraspecies unilateral incompatibility of B. rapa7, but it remains unclear whether MLPK is required for self-incompatibility throughout the Brassicaceae.journal articl

    Uterine epithelial Gp130 orchestrates hormone response and epithelial remodeling for successful embryo attachment in mice

    Get PDF
    Abstract Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice
    corecore