484 research outputs found
Coordination of prophage and global regulator leads to high enterotoxin production in staphylococcal food poisoning-associated lineage
Staphylococcus species in food produce Staphylococcal enterotoxins (SEs) that cause Staphylococcal food poisoning (SFP). More than 20 SE types have been reported, among which Staphylococcal enterotoxin A (SEA) has been recognized as one of the most important SEs associated with SFP. However, the regulatory mechanisms underlying its production remain unclear. Previously, we identified a major SFP clone in Japan, CC81 subtype-1, which exhibits high SEA production. In this study, we attempted to identify the factors contributing to this phenomenon. Thus, we demonstrated that the attenuation of the activity of endogenous regulator, Staphylococcal accessory regulator S (SarS), and the lysogenization of a high SEA-producing phage contributed to this phenomenon in CC81 subtype-1. Furthermore, our results indicated that SarS could directly bind to the promoter upstream of the sea gene and suppress SEA expression; this low SarS repression activity was identified as one of the reasons for the high SEA production observed. Therefore, we revealed that both exogenous and endogenous factors may probably contribute to the high SEA production. Our results confirmed that SE production is a fundamental and critical factor in SFP and clarified the associated production mechanism while enhancing our understanding as to why a specific clone frequently causes SFP.journal articl
Measurement of the Branching Fraction, Polarization, and CP Asymmetry for B0→ρ+ρ- Decays, and Determination of the Cabibbo-Kobayashi-Maskawa Phase ϕ2
journal articl
Interaction detection of <i>AVI</i> in the PRD.
Atmospheric environmental assessment has emerged as a prominent area of research due to global climate change and regional atmospheric pollution issues. Accurate evaluation of atmospheric environmental vulnerability characteristics and understanding driving mechanisms are crucial for effective air pollution monitoring and prevention. This study focuses on the Pearl River Delta (PRD) region and employs the Vulnerability-Scoping-Diagram (VSD) model framework to establish an index system for assessing atmospheric environmental vulnerability based on exposure, sensitivity, and adaptability, combining the entropy value method and adopts Geographic Information System (GIS) for the time change and spatial evolution analysis, and finally utilizing the factor detection and interaction in Geodetector to explore the contribution degree of each driving factor of atmospheric environmental vulnerability and the exchange of influencing factors. The findings of this research are as follows: Firstly, the sensitivity index and resilience index of the atmospheric environment of the PRD exhibit an overall upward trend with fluctuations, while the exposure index demonstrates a pattern of initial increase, followed by a decrease, and subsequent increase with significant interannual variability. Secondly, the atmospheric environment vulnerability level of the PRD is primarily categorized as low and mild, with a negligible proportion of moderate vulnerability and no instances of severe or extreme vulnerability. The vulnerability index shows an initial increase followed by a subsequent decline from 2016 to 2020, indicating an overall improvement in the region’s atmospheric environment. Thirdly, notable variations exist in the atmospheric environment vulnerability indices among the nine cities in the PRD, in which moderate vulnerability and low vulnerability are mainly concentrated in Guangzhou, Shenzhen, Foshan, and Dongguan in the central part of the PRD. lower vulnerability is primarily observed in the eastern and western regions of the PRD characterized by favorable natural environments and limited human interference, such as Huizhou, Zhaoqing, and Zhuhai. Finally, the atmospheric environment vulnerability of the PRD is the result of the combined effect of various driving factors, among which the urban built-up area, PM2.5 concentration, SO2 concentration, population density and the share of tertiary industry in GDP are the key drivers.</div
Spatial distribution of <i>EI</i> in the PRD.
Reprinted background map from the National Catalogue Service for Geographic Information (www.webmap.cn) under a CC BY license, with permission from the Ministry of Natural Resources of China, original copyright 2020.</p
<i>AVI</i> classification.
Atmospheric environmental assessment has emerged as a prominent area of research due to global climate change and regional atmospheric pollution issues. Accurate evaluation of atmospheric environmental vulnerability characteristics and understanding driving mechanisms are crucial for effective air pollution monitoring and prevention. This study focuses on the Pearl River Delta (PRD) region and employs the Vulnerability-Scoping-Diagram (VSD) model framework to establish an index system for assessing atmospheric environmental vulnerability based on exposure, sensitivity, and adaptability, combining the entropy value method and adopts Geographic Information System (GIS) for the time change and spatial evolution analysis, and finally utilizing the factor detection and interaction in Geodetector to explore the contribution degree of each driving factor of atmospheric environmental vulnerability and the exchange of influencing factors. The findings of this research are as follows: Firstly, the sensitivity index and resilience index of the atmospheric environment of the PRD exhibit an overall upward trend with fluctuations, while the exposure index demonstrates a pattern of initial increase, followed by a decrease, and subsequent increase with significant interannual variability. Secondly, the atmospheric environment vulnerability level of the PRD is primarily categorized as low and mild, with a negligible proportion of moderate vulnerability and no instances of severe or extreme vulnerability. The vulnerability index shows an initial increase followed by a subsequent decline from 2016 to 2020, indicating an overall improvement in the region’s atmospheric environment. Thirdly, notable variations exist in the atmospheric environment vulnerability indices among the nine cities in the PRD, in which moderate vulnerability and low vulnerability are mainly concentrated in Guangzhou, Shenzhen, Foshan, and Dongguan in the central part of the PRD. lower vulnerability is primarily observed in the eastern and western regions of the PRD characterized by favorable natural environments and limited human interference, such as Huizhou, Zhaoqing, and Zhuhai. Finally, the atmospheric environment vulnerability of the PRD is the result of the combined effect of various driving factors, among which the urban built-up area, PM2.5 concentration, SO2 concentration, population density and the share of tertiary industry in GDP are the key drivers.</div
Evaluation index system.
Atmospheric environmental assessment has emerged as a prominent area of research due to global climate change and regional atmospheric pollution issues. Accurate evaluation of atmospheric environmental vulnerability characteristics and understanding driving mechanisms are crucial for effective air pollution monitoring and prevention. This study focuses on the Pearl River Delta (PRD) region and employs the Vulnerability-Scoping-Diagram (VSD) model framework to establish an index system for assessing atmospheric environmental vulnerability based on exposure, sensitivity, and adaptability, combining the entropy value method and adopts Geographic Information System (GIS) for the time change and spatial evolution analysis, and finally utilizing the factor detection and interaction in Geodetector to explore the contribution degree of each driving factor of atmospheric environmental vulnerability and the exchange of influencing factors. The findings of this research are as follows: Firstly, the sensitivity index and resilience index of the atmospheric environment of the PRD exhibit an overall upward trend with fluctuations, while the exposure index demonstrates a pattern of initial increase, followed by a decrease, and subsequent increase with significant interannual variability. Secondly, the atmospheric environment vulnerability level of the PRD is primarily categorized as low and mild, with a negligible proportion of moderate vulnerability and no instances of severe or extreme vulnerability. The vulnerability index shows an initial increase followed by a subsequent decline from 2016 to 2020, indicating an overall improvement in the region’s atmospheric environment. Thirdly, notable variations exist in the atmospheric environment vulnerability indices among the nine cities in the PRD, in which moderate vulnerability and low vulnerability are mainly concentrated in Guangzhou, Shenzhen, Foshan, and Dongguan in the central part of the PRD. lower vulnerability is primarily observed in the eastern and western regions of the PRD characterized by favorable natural environments and limited human interference, such as Huizhou, Zhaoqing, and Zhuhai. Finally, the atmospheric environment vulnerability of the PRD is the result of the combined effect of various driving factors, among which the urban built-up area, PM2.5 concentration, SO2 concentration, population density and the share of tertiary industry in GDP are the key drivers.</div
<i>AVI</i> of each city from 2016 to 2020.
Atmospheric environmental assessment has emerged as a prominent area of research due to global climate change and regional atmospheric pollution issues. Accurate evaluation of atmospheric environmental vulnerability characteristics and understanding driving mechanisms are crucial for effective air pollution monitoring and prevention. This study focuses on the Pearl River Delta (PRD) region and employs the Vulnerability-Scoping-Diagram (VSD) model framework to establish an index system for assessing atmospheric environmental vulnerability based on exposure, sensitivity, and adaptability, combining the entropy value method and adopts Geographic Information System (GIS) for the time change and spatial evolution analysis, and finally utilizing the factor detection and interaction in Geodetector to explore the contribution degree of each driving factor of atmospheric environmental vulnerability and the exchange of influencing factors. The findings of this research are as follows: Firstly, the sensitivity index and resilience index of the atmospheric environment of the PRD exhibit an overall upward trend with fluctuations, while the exposure index demonstrates a pattern of initial increase, followed by a decrease, and subsequent increase with significant interannual variability. Secondly, the atmospheric environment vulnerability level of the PRD is primarily categorized as low and mild, with a negligible proportion of moderate vulnerability and no instances of severe or extreme vulnerability. The vulnerability index shows an initial increase followed by a subsequent decline from 2016 to 2020, indicating an overall improvement in the region’s atmospheric environment. Thirdly, notable variations exist in the atmospheric environment vulnerability indices among the nine cities in the PRD, in which moderate vulnerability and low vulnerability are mainly concentrated in Guangzhou, Shenzhen, Foshan, and Dongguan in the central part of the PRD. lower vulnerability is primarily observed in the eastern and western regions of the PRD characterized by favorable natural environments and limited human interference, such as Huizhou, Zhaoqing, and Zhuhai. Finally, the atmospheric environment vulnerability of the PRD is the result of the combined effect of various driving factors, among which the urban built-up area, PM2.5 concentration, SO2 concentration, population density and the share of tertiary industry in GDP are the key drivers.</div
Study area.
Reprinted background map from the National Catalogue Service for Geographic Information (www.webmap.cn) under a CC BY license, with permission from the Ministry of Natural Resources of China, original copyright 2020.</p
Spatial distribution of <i>ACI</i> in the PRD.
Reprinted background map from the National Catalogue Service for Geographic Information (www.webmap.cn) under a CC BY license, with permission from the Ministry of Natural Resources of China, original copyright 2020.</p
<i>EI</i> of the PRD from 2016 to 2020.
Atmospheric environmental assessment has emerged as a prominent area of research due to global climate change and regional atmospheric pollution issues. Accurate evaluation of atmospheric environmental vulnerability characteristics and understanding driving mechanisms are crucial for effective air pollution monitoring and prevention. This study focuses on the Pearl River Delta (PRD) region and employs the Vulnerability-Scoping-Diagram (VSD) model framework to establish an index system for assessing atmospheric environmental vulnerability based on exposure, sensitivity, and adaptability, combining the entropy value method and adopts Geographic Information System (GIS) for the time change and spatial evolution analysis, and finally utilizing the factor detection and interaction in Geodetector to explore the contribution degree of each driving factor of atmospheric environmental vulnerability and the exchange of influencing factors. The findings of this research are as follows: Firstly, the sensitivity index and resilience index of the atmospheric environment of the PRD exhibit an overall upward trend with fluctuations, while the exposure index demonstrates a pattern of initial increase, followed by a decrease, and subsequent increase with significant interannual variability. Secondly, the atmospheric environment vulnerability level of the PRD is primarily categorized as low and mild, with a negligible proportion of moderate vulnerability and no instances of severe or extreme vulnerability. The vulnerability index shows an initial increase followed by a subsequent decline from 2016 to 2020, indicating an overall improvement in the region’s atmospheric environment. Thirdly, notable variations exist in the atmospheric environment vulnerability indices among the nine cities in the PRD, in which moderate vulnerability and low vulnerability are mainly concentrated in Guangzhou, Shenzhen, Foshan, and Dongguan in the central part of the PRD. lower vulnerability is primarily observed in the eastern and western regions of the PRD characterized by favorable natural environments and limited human interference, such as Huizhou, Zhaoqing, and Zhuhai. Finally, the atmospheric environment vulnerability of the PRD is the result of the combined effect of various driving factors, among which the urban built-up area, PM2.5 concentration, SO2 concentration, population density and the share of tertiary industry in GDP are the key drivers.</div
- …
