30 research outputs found
Measurement of branching fraction and time-dependent CP asymmetry parameters in B^0 → D^*+D^*-K^{0}_{S}decays
We present a measurement of the branching fraction and time-dependent CP violation parameters for B^0 → D^*+D^*-K^{0}_{S} decays. These results are obtained from a 414 fb^{-1} data sample that contains 449×10^6 B\bar{B} pairs collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We obtain the branching fraction, B(B^0→D^*+D*^-K^{O}_{S})= [3.4±0.4(stat)±0.7(syst)]×10^-3, which is in agreement with the current world average. We also obtain an upper limit on the product branching fraction for a possible two-body decay, B(B^0 → D_s1^+(2536)D^*-)B(D_s1^+(2536)→ D^*+K^{O}_{S})s^+, where s^±[equivalent]m2(D^*±K^{0}_{S}), we extract the CP violation parameters, J_c/J_0=0.60^{+0.25}_{-0.28}(stat)±0.08(syst), 2J_s1/J_0sin2φ_1=-0.17^{+0.42}_{-0.42}(stat)±0.09(syst), 2J_s2/J_0cos2φ_1=-0.23^{+0.43}_{-0.41}(stat)±0.13(syst). A large value of J_c/J_0 would indicate a significant resonant contribution from a broad unknown D_s^**+ state. Although the sign of the factor, 2J_s2/J_0, can be deduced from theory, no conclusion can be drawn regarding the sign of cos2φ_1 given the errors.journal articl
The MET 7 : Its correlation with the university entrance examinations (english part) 2012 and 2013
日本人大学生の英語能力を測定するために、牧・和佐田・橋本(2003)は、CD を聞きながら、問題用紙の72 箇所の空欄に、4 文字以下の英単語を埋めていく、5 分間の英語テスト、最小英語テスト(Minimal English Test, MET)を開発した。しかしながら、なぜ4 文字以下の英単語を選んだのかという問題が生じたため、この問題を解決するために、牧、他7 名(2012)は、6単語置きに空欄を設けた、6 単語置き版最小英語テスト(Minimal English Test 6B, MET 6B)を開発した。本研究では、新たに7 単語置き版最小英語テスト(Minimal English Test 7, MET7)を開発し、大学入試センターの英語試験とMET 7 の得点が統計的有意な相関があるかどうかを調査した。回帰分析の結果、(1)MET 7 の得点と2012 年大学入試センター試験の英語総合点の間には、統計的有意な中程度の相関があり(n= 61, r=.53, p<.001)、(2)MET 7 の得点と2013年大学入試センター試験の英語総合点の間には、統計的有意な中程度の相関があった(n= 61,r=.56, p<.001)ことを報告する。そして、MET は、手軽に利用できる英語能力測定テストであり、学習者の自律学習に貢献する可能性を持っていることを示唆する。departmental bulletin pape
Precision for WGBS libraries with reads length of 120 bp.
<p>Table reports precision varying the sequencing error from 0% to 6% for 250 thousands of 120 bp reads mapped against the build 37.3 of the human genome.</p
Tool settings used to map synthetic reads.
<p>Tool settings used to map reads of synthetic libraries. Default settings have been used for not specified parameters.</p><p>Ungapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie.</p><p>Gapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie2.</p><p>Gapped local alignments. In these experiments BS-Seeker2 is used with Bowtie2.</p
Unique best mapped reads for RRBS libraries with reads length of 120 bp.
<p>The graph represents the percentage of unique best mapped reads obtained for each tool as function of the sequencing error for RRBS synthetic libraries with reads length of 120 bp.</p
F1 measure analyzing WGBS libraries with reads length of 75 bp.
<p>This figure reports F1 measure varying sequencing error from 0% to 6% for 250 thousands of 75 bp reads mapped against the build 37.3 of the human genome.</p
Performance evaluation on WGBS data.
<p>Performances comparison on real-life libraries among GPU-BSM, Bismark, BSMAP, BS-Seeker2, and segemehl. Two directional libraries are analyzed: <i>SRR019597</i>, which consists of 5.943.586 reads of length 76 bp, and <i>SRR019048</i>, which consists of 15.331.851 reads of length 87 bp. The first and second column of the table report the library and the name of the tools, respectively. The third column reports the time required to analyze the libraries. Columns 4 to 9 report the percentage of uniquely mapped reads according to the number of mapping differences. Differences are mismatches when the tools are used to look for ungapped alignments, whereas they may be mismatches and/or indels when the tools are used to look for gapped alignments. Computing time for GPU-BSM has been reported running it on a single and on two GPUs. As for multi-threading based tools, computing time has been reported for 12 cores. Tools settings: <i>i</i>) GPU-BSM -m 5 –ungapped -l 1, GPU-BSM -m 5 –e2e -l 1, GPU-BSM -m 5 -l 1; moreover for all experiments with GPU-BSM the following settings have been used: -L 76 for SRR019597 and -L 87 for SRR019048, -g 0 to run the experiment on a single GPU (-g 0 -g 1 to run the experiment on two GPUs); <i>ii</i>) Bismark -q ––directional, Bismark -q –directional –bowtie2 -p 6; <i>iii</i>) BSMAP -v 5 -w 2 -r 0 -p 12; <i>iv</i>) BS-Seeker2 -m 5 –aligner = bowtie -f sam, BS-Seeker2 -m 5 –aligner = bowtie2 -f sam –bt2–end-to-end –bt2-p 6, BS-Seeker2 -m 5 –aligner = bowtie2 -f sam –bt2-p 6<i>v</i>) segemehl -F 1 -H 1 -D 0 -A 70 –threads 12.</p><p>GPU-BSM run on a single GPU.</p><p>GPU-BSM run on two GPUs.</p><p>Bismark and BS-Seeker2 run in parallel two instances of Bowtie2. To ensure that both tools use 12 core we used the option -p 6/–bt2-p 6 so that each Bowtie2 instance runs with 6 threads.</p
