13 research outputs found
幼稚園の配布文書に見るニーズ別語彙シラバスの課題 : 「情報のトリアージ」を踏まえた頻出語調査より
本稿は、ニーズ別語彙シラバスを作成する過程に、情報の重要度という新たな視点を加えるものである。幼稚園の配布文書を調査対象とし、全て一括で集計した場合と「情報のトリアージ」という考えをもとに情報の重要度別に集計した場合の頻出語の違いを比較した。その結果、使われている名詞には情報の重要度ごとに異なる特徴が見られた。ニーズ別語彙シラバスの作成のためには、学習者が読み取らなければならない情報の緊急性、重要性を考え、文書を選別して調査を行う必要性が示唆される結果となった。この「情報のトリアージ」という視点を入れることは、すべての読み手にとって読みかたを選べる有益な手段だと考えられる。textapplication/pdfdepartmental bulletin pape
Diazotization of kynurenine by acidified nitrite secreted from indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells
Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway regulates T-cell responses in some dendritic cells (DC) such as plasmacytoid DC. A Kyn assay using HPLC showed that samples were frequently deproteinized with trichloroacetic acid (TCA). In the present study, bone marrow derived myeloid DC (BMDC) were differentiated from mouse bone marrow cells with GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with NO production in BMDC cultured for 24 hr. The concentrations of Kyn in the culture supernatants were not increased by stimulation with CpG but rather decreased by based on the Kyn assay after deproteinization with TCA. The level of Kyn exogenously added into the cell-free culture supernatant of BMDC stimulated with CpG was severely decreased by deproteinization with TCA but not methanol, and the decrease was prevented when BMDC was stimulated with CpG in the presence of a NOS inhibitor. Under acidic conditions, Kyn reacted with nitrite produced by BMDC, and generated a new compound that was not detected by Ehrlich reagent reacting with the aromatic amino residue of Kyn. An analysis by mass spectrometry showed the new compound to be a diazotization form of Kyn. In conclusion, the deproteinization of samples by acidic treatment should be avoided for the Kyn assay when NO is produced.journal articl
Seismic characterisation of recent north Kagoshima Province earthquakes, Kyushu Island, Japan
Several earthquakes with moderate magnitudes have shaken an area in the northem part of Kagoshima Province, Kyushu Island, Japan in the period of March 26 to May 20, 1997. Earthquakes of March 26 and May 13 were the two main shocks with magnitudes of 6.5 and 6.3 respectively, in JMA scale. The seismicity of the area was very low and has not experienced a large earthquake of more than 6.5. This study aimed to clarify their special seismic characteristics from several point of views and some suggestions concerning further investigation of attenuation characteristics for the region are given
Immunolocalization of hClC-6 in transfected COS-1 cells.
<p>Double immunofluorescence confocal images of COS-1 cells transiently transfected with pcDNA3.1(−)/hClC-6a. hClC-6 expression (left column) was detected using the polyclonal α-hClC-6 antibody and visualized with anti-rabbit IgG antibodies conjugated to Alexa Fluor 488 (green signal). Organelles were stained with the following antibodies or markers (middle column): (A) mouse anti-BIP (an endoplasmic reticulum marker); (B) mouse anti-Golgin-97 (a Golgi marker); (C) mouse anti-LAMP-1 (a late endosomal/lysosomal marker); (D) mouse anti-EEA-1 (an early endosome marker); (E) mouse anti-transferrin receptor (TfR, an early/recycling endosome marker). The marker antibodies were visualized by anti-mouse IgG antibodies conjugated to Alexa Fluor 594 (red signal). The column on the right shows merged pictures of ClC-6 expression and marker staining with yellow indicating colocalization. The scale bars represent 10 µm.</p
hClC-6 is glycosylated upon overexpression.
<p>(A) Western blots showing the effect of tunicamycin and (a) PNGaseF and (b) EndoH on hClC-6. For tunicamycin COS-1 cells were incubated with tunicamycin (0.05 and 0.1 µg/ml) for 36 hours; for PNGaseF and EndoH membrane fractions of hClC-6 expressing COS-1 cells were treated as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000474#s2" target="_blank">materials and methods</a>. ‘WT’ refers to untreated hClC-6. The small difference in molecular mass between PNGaseF and tunicamycin-treated hClC-6 might be due to the presence of oligosaccharides carrying fucose-linked α1–3 to the GlcNac attached directly to asparagines, which are PNGaseF resistant as described by Dwek <i>et al. </i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000474#pone.0000474-Dwek1" target="_blank">[53]</a>. (B)(a), Model of the hClC multimeric structure of 2 homologous subunits with the possible glycosylation sites marked as spheres. (b), Partial sequence alignment (ClustalW) of all members of the CLC family reveals that Asn residues that possibly participate in glycosylation (marked in red) in hClC-6 are situated in a region that is poorly conserved among the other members of the CLC family and located between predicted helices K and M. (C) Western blots of membrane fractions of COS-1 cells expressing WT or mutant hClC-6. (a), Glycosylation pattern of the triple (AAA: N410A/N422A/N432A) and quadruple (AAAA: N137A/N410A/N422A/N432A) mutant compared to WT and WT with tunicamycin. (b), Glycosylation pattern of the double mutants (AAN: N410A/N422A; ANA: N10A/N432A; NAA: N422A/N432A) compared to glycosylated WT and the triple mutant (AAA). (c), Glycosylation pattern of the single mutants (ANN: N410A, NAN: N422A, NNA: N432A) compared to the glycosylated WT and deglycosylated WT treated with tunicamycin. (d), Effect of PNGaseF treatment on a single (ANN: N410A) and double (AAN: N410A/N422A) mutant compared to WT and triple (AAA) mutant. (e), Effect of EndoH treatment on a single (ANN: N410A) and double (AAN: N410A/N422A) mutant compared to WT and triple (AAA) mutant. Bands marked with an asterisk, occasionally observed in the WT protein and frequently observed in single mutants after sustained exposure represent possible intermediary biosynthetic products, which are PNGaseF-sensitive and EndoH-insensitive as shown in panels (d) and (e).</p
Immunolocalization of overexpressed hClC-6 in SH-SY5Y cells.
<p>Double immunofluorescence confocal images of SH-SY5Y cells, transiently transfected with pcDNA3.1(−)/hClC-6a expression vector. Overexpression levels were very high, so that transfected cells could easily be distinguished from non-transfected cells. Overexpressed hClC-6 (left column) was detected using the polyclonal α-hClC-6 antibody and visualized with anti-rabbit IgG antibodies conjugated to Alexa Fluor 488 (green signal). Markers for different endosomal compartments (middle column) were (A) mouse anti-EEA-1 (an early endosome marker); (B) mouse anti-transferrin receptor (TfR, an early/recycling endosome marker); (C) mouse anti-LAMP-1 (a late endosomal/lysosomal marker). Primary antibodies were visualized using anti-mouse IgG antibodies conjugated to Alexa Fluor 594 (red signal). In the merged pictures (right column) colocalization is indicated by a yellow signal. The scale bars represent 10 µm.</p
Development of a polyclonal antibody against human ClC-6 (hClC-6).
<p>Multiple sequence alignment (ClustalW) of all human CLC proteins revealed a COOH-terminal region that is unique for ClC-6 (aa 639–740). This region interrupts the first cystathionine-β synthase (CBS) domain in the COOH-terminal cytosolic tail <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000474#pone.0000474-Ignoul1" target="_blank">[52]</a>. Polyclonal antibodies were raised against an epitope (aa 672–686; red box) in this unique region.</p
Colocalization of overexpressed hClC-6 with different endosomal Rab-proteins.
<p>Confocal images of double transiently transfected HeLa cells, expressing hClC-6 and (A) GFP-Rab4, (B) GFP-Rab5, (C) GFP-Rab7, (D) GFP-Rab11. hClC-6 was detected with the polyclonal α-hClC-6 antibody and visualized with anti-rabbit IgG antibodies conjugated to Alexa Fluor 594. The Rab signals were visualized by the GFP signal. (E) Represents a confocal image of double transiently transfected COS-1 cells, expressing the glycosylation-deficient AAA-hClC-6 (red signal) and GFP-Rab4 (green signal). The scale bars represent 10 µm.</p
hClC-6 resides in detergent resistant membrane fractions.
<p>(A) DRM fractions of COS-1 cells overexpressing respectively (a) hClC-6 and (b) KKGRR/AAGAA-hClC-6; were prepared and separated on a sucrose gradient. Upward flotation of the DRM's was checked by distribution of caveolin-1 (Cav-1) which migrated to the top of the gradient (fractions 2/3/4). Transferrin receptor (TfR), a non-raft membrane protein, was used as a negative control (fractions 8/9 at the bottom of the gradient). hClC-6 expression was checked by staining with the polyclonal α-hClC-6. (B) Confocal images of double transiently transfected COS-1 cells, expressing GFP-hClC-7 and wild type hClC-6 (panels a to c) or KKGRR/AAGAA-hClC-6 (panels d to f). Wild type and KKGRR/AAGAA-hClC-6 were detected with the polyclonal α-hClC-6 antibody and visualized with anti-rabbit IgG antibodies conjugated to Alexa Fluor 594 (red signal, panels a and d). ClC-7 expression is visualized by the GFP signal (green signal, panels b and e). A yellow signal indicates colocalization (panels c and f). Scale bars represent 10 µm.</p
