44 research outputs found
モンスーンアジアにおける地表面変化と気候・水循環変動 : 統合的国際共同研究
GAME観測データや長期客観解析データにもとづいて、ユーラシア大陸における植生と気候の季節変化における相互作用、大陸スケール広域水循環の数年周期の東西振動、積雪の季節変化と熱収支、チベット高原における地表面変化と大気加熱変化、対流活動変動と広域アジアモンスーン変動の季節内変動の関係、およびモンスーンアジアの広域および流域スケールでの水循環変化などの解明が行われた。また、TRMM-PRの高解像の衛星観測データの解析により、モンスーンの熱源域である西部熱帯太平洋から東南アジアにおける、降水量の日変化変動の時空間特性とその地表面状態との関連が明らかにされた。モデルによる研究では、領域大気モデルにより、インドシナ半島やスマトラ地域に顕著な対流活動の日変化特性と海陸分布、地表面状態、地形との関連に、新しい知見が得られた。東アジアでは、陸面の乾湿状態が梅雨前線のメソシステムの発達に密接に関与していることが、データ解析とモデルにより示された。大気大循環モデルでの研究では、チベット高原と植生分布の有無が、アジアモンスーンの成立にどの程度寄与しているかについての実験を行い、植生の存在が高原の地形効果同様、モンスーンの成立に重要であることが明らかにされた。さらに、東南アジアモンスーンにおけるチベット高原と海面水温の相対的役割の評価、中国の水田が梅雨前線活動に与える影響、梅雨前線の成立に果たすチベット高原や土壌水分などの地表面状態の役割等が、いくつかの気候モデルを用いて明らかにされた。これらの観測およびモデルによる研究成果は、Scienceを含む国際的学術雑誌に、すでに200編以上が受理、または印刷がなされている。本年度は最終年度として、これらの成果発表を含む第6回GAME国際研究集会を京都で開催した結果、180名の出席、約150編の研究発表があり、今後の研究の展望の議論が活発になされた。科学研究費補助金 研究種目:基盤研究(A) 課題番号:14204044 研究代表者:安成哲三 研究期間:2002-2004年度research repor
Dynamic Behavior of Gas Permeation in Solid Polymer Electrolyte Membranes*
application/pdfThe permeabilities of ethylene, propylene and carbon dioxide through various solid polymer electrolyte (SPE) membranes such as Nafion 417 (N-417), Asahikasei K-101 and A-201 and metal ion modified membranes have been compared at temperature ranges 0?80℃, using a flow-type diffusion cell newly developed for gas permeation under atmospheric pressure. K-101 and A-201 give no reproducibility of the permeability because of the cracks irreversibly formed on the membranes during the diffusion of gases, whereas N-417 gives a good reproducibility despite a small amount of permeability. On the silver-supported membrane, the permeabilities of C_2H_4 and C_3H_6 are clearly enhanced 2?3 times even though CO_2 is reduced to one third, and this is suggested by the formation of silver-olefin complexes which work as a pump to carry olefin gas. On the nickel-supported membranes, permeability is always reduced because the ion channel of the membrane for gas diffusion is diminished by the metal ions.departmental bulletin pape
Saccade latencies.
Saccade latencies in the second block of each saccade adaptation condition show that scanning saccades are slower than reactive saccades.</p
Quantification of dual process contribution to reactive and scanning saccades.
(A) Comparison of process gain in both saccade type (reactive and scanning) and direction (gain-up and gain-down) blocks. (B) Contribution of slow process to overall adaptation averaged over gain-down and gain-up blocks for reactive and scanning blocks separately. This shows that reactive saccades are equally driven by the fast and slow process, whereas scanning saccades are driven mainly by the slow process. (C) Reactive minus scanning process gain averaged over gain-up and gain-down blocks for the slow and fast process separately. This shows that the slow process is stronger in scanning compared to reactive saccades, while the fast process is stronger in reactive compared to scanning saccades. Error bars depict 95% CI over participants. Individual dots and lines indicate individual participants.</p
FIRDeconvolution
<p>FIRDeconvolution is a python class that performs finite impulse response fitting on time series data, in order to estimate event-related signals.</p>
<p>This release features the FIRDeconvolution python class and two tutorial notebooks, one describing FIR response fitting on simulated data, the other outlining a preprocessing strategy and pipeline for pupil size recording data. </p
Saccade adaptation time-courses for the different conditions.
Saccade amplitude across trials for the different saccade conditions (reactive and scanning) and for the different orders of gain direction blocks (down-up or up-down). Saccade amplitude is depicted as the ratio to median saccade amplitude in the first block (per saccade direction, see Methods) and shown as running average over 6 saccades (the hexagonal period). Shaded areas correspond to 95% CI over participants.</p
Experimental design.
(A) Participants made saccades to targets around a clockwise hexagonal path. In the reactive saccade condition, a single target sequentially jumped along the corners of the hexagonal. Subjects were instructed to simply follow the target. In the scanning saccade condition, all targets were always presented and subjects were instructed to saccade to the next clockwise target when the currently fixated target flashed. During the saccade, targets jumped either further away from (gain-up) or closer to (gain-down) previous fixation. Participants sat in full darkness and all stimuli were filled red squares. Note that dotted outline and different appearance of squares are for illustrative purposes only. (B) The experiment was made up of an initial baseline block, two adaptation blocks and a final baseline block. All participants completed two experimental sessions per saccade type, switching the adaptation block orders between gain-up and gain-down.</p
Dual-rate model fits to gain-up and gain-down adapted reactive and scanning saccades.
Fitted fast (blue) and slow (black) processes to overall adaptation (green when gain-down and red when gain-up) to data from the second block. Shaded areas around model fits represent the 95% CI over participants. Underlying shaded data area indicates 95% CI over participants of moving average over six trials (as in Fig 3).</p
