16 research outputs found
Transport property and pressure effect on Ba1-xKxBiO3 and BaPbxBi1-xO3 with strong electron phonon interaction
筑波大学University of Tsukuba博士(工学)Doctor of Philosophy in Engineering酸化物超伝導体として「知られるBaPbxBi1-xO3,及びBA1-xKxBiO3は低ドープ領域(x<0.65及びx<0.3)において,強い電子格子相互作用によって2eVもの直接遷移ギャップと約0.4eVの間接遷移ギャップを生じる半導体である。その機構は酸素八面体のブリージングモード歪とそれに伴うBiイオンの電荷不均化によって起こる電荷密度波(CDW)により説明されている。本研究ではこれらの物質について輸送特性,磁性及び圧力効果を調べた。BaPbxBi1-xO3については,抵抗率,ホール効果測定を半導体相(0<x<0.65)について行ない,その温度依存性から次のことがわかった。この系で,特に金属相に近い組成領域では,伝導を担うキャリアとして電子,ホール共に電気伝導に同程度の寄与をしている。そしてそれらの伝導機構は,帯磁率,光学測定の結果との比較から,酸素八面体のブリージングモードと結合したポーラロン伝導であることが示唆される。 ・・・2003英タイトルは英文標題紙によるdoctoral thesi
Additional file 6: of An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing
List of genes underlying the significant QTLs involved in vine, flowering and fruit traits variation annotated in the last version of the C. pepo genome (v 3.2) available [13]. (XLSX 146 kb
Table_3_A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus.xlsx
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.</p
Table_5_A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus.xlsx
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.</p
Проектирование дизайн-объектов в дисциплине "Выполнение художественно-конструкторских проектов в материале"
Значение художественно-проектной компетенции в профессиональной деятельности студентов направления "Промышленный дизайн" в Красноярском педагогическом колледже №2. Методическое обеспечение дисциплины "Выполнение художественно-конструкторских проектов в материале" по выполнению проектов
Table_2_A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus.XLSX
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.</p
Table_4_A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus.XLSX
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.</p
Image_1_A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus.tif
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance.</p
