351 research outputs found
Recommended from our members
A combined local damage index for seismic assessment of existing RC structures
A new local damage index for existing reinforced concrete (RC) structures is introduced, wherein deterioration caused by all deformation mechanisms (flexure, shear, anchorage slip) is treated separately for each mechanism. Moreover, the additive character of damage arising from the three response mechanisms, as well as the increase in degradation rate caused by their interaction, are fully taken into consideration. The proposed local damage index is then applied, in conjunction with a finite element model developed previously by the authors, to assess seismic damage response of several RC column and frame test specimens with substandard detailing. It is concluded that in all cases and independently from the prevailing mode of failure, the new local damage index describes well the damage pattern of the analysed specimens
Recommended from our members
Damage Analysis of Reinforced Concrete Structures with Substandard Detailing
The goal of this study is to investigate seismic behaviour of existing R/C buildings designed and constructed in accordance with standards that do not meet current seismic code requirements. In these structures, not only flexure, but also shear and bond-slip deformation mechanisms need to be considered, both separately and in combination. To serve this goal, a finite element model is developed for inelastic seismic analysis of complete planar R/C frames. The proposed finite element is able to capture gradual spread of inelastic flexural and shear deformations as well as their interaction in the end regions of R/C members. Additionally, it is capable of predicting shear failures caused by degradation of shear strength in the plastic hinges of R/C elements, as well as pullout failures caused by inadequate anchorage of the reinforcement in the joint regions. The finite element is fully implemented in the general inelastic finite element code IDARC2D and it is verified against experimental results involving individual column and plane frame specimens with nonductile detailing. It is shown that, in all cases, satisfactory correlation is established between the model predictions and the experimental evidence. Finally, parametric studies are conducted to illustrate the significance of each deformation mechanism on the seismic response of the specimens under investigation. It is concluded, that all deformation mechanisms, as well as their interaction, should be taken into consideration in order to predict reliably seismic damage of R/C structures with substandard detailing
- …
